
A New Algorithm for Computing Shortest Paths inWeighted Planar Subdivisions(Extended Abstract)Cristian S. Mata � Joseph S. B. Mitchell y
AbstractWe present a practical new algorithm for the problem ofcomputing low-cost paths in a weighted planar subdivisionor on a weighted polyhedral surface. The algorithm is basedon constructing a relatively sparse graph, a \pathnet", thatlinks selected pairs of subdivision vertices with locally op-timal paths. The pathnet can be searched for paths thatare provably close to optimal and approach optimal, as onevaries the parameter that controls the sparsity of the path-net.We analyze our algorithm both analytically and experi-mentally. We report on the results of a set of experimentscomparing the new algorithm with other standard methods.1 IntroductionFor a given weight function, F : <2 ! <, the weightedlength of an s-t path � in the plane is the path integral,R� F (x; y)d�, of the weight function along the path �, link-ing the start s to the goal t. The weighted region metricassociated with F de�nes the distance dF (s; t) to be the in-�mum over all s-t paths � of the weighted length of �. Theweighted region problem (WRP) is to �nd an optimal s-t pathaccording to the weighted region metric, dF , induced by agiven piecewise-constant weight function, F . This problemis a natural generalization of the shortest-path problem in apolygonal domain: Consider a weight function that assignsweight 1 to P and weight1 (or a su�ciently large constant)to the obstacles (the complement of P).The weighted region problem models the minimum-timepath problem for a point robot moving in a terrain of varied�Department of Computer Science, State University ofNew York, Stony Brook, NY 11794-4400, email: cris-tian@cs.sunysb.edu; Supported by NSF (CCR-9204585 andCCR-9504192) and by a grant from Hughes Aircraft.yDepartment of Applied Mathematics and Statistics, StateUniversity of New York, Stony Brook, NY 11794-3600, email:jsbm@ams.sunysb.edu; Partially supported by NSF grantsCCR-9204585 and CCR-9504192, and by grants from BoeingComputer Services and Hughes Aircraft.

types (e.g., grassland, brushland, blacktop, bodies of water,etc), where each type of terrain has an assigned weight equalto the reciprocal of the maximum speed of traversal for therobot. It also arises in numerous other applications involv-ing route planning in geographic data ([5, 15, 23]), militarymission planning and decision support ([1, 10, 11, 13, 14, 15,21, 22]), and uid ow in injection molding [8].We assume that f is speci�ed by a triangulation havingn vertices, with each face assigned an integer weight � 2f0; 1; : : : ;W;+1g. We can allow edges of the triangulationto have a weight that is possibly distinct from that of thetriangular facets on either side of it; in this way, \linearfeatures" such as \roads" can be modeled.This paper describes an algorithm to compute nearly op-timal paths between two points in weighted polygonal sub-divisions. We call the data structure built by the algorithma pathnet. The pathnet can be used to answer path queriesbetween pairs of points in the subdivision.The new algorithm has been fully implemented (in C++)and tested against various other approaches on a large setof data. We report here on our experimental results.Main Contributions(1) We present a new algorithm for the weighted regionproblem, and analyze its e�ectiveness in approximat-ing an optimal path. The algorithm is based on con-structing a graph, a pathnet, that is guaranteed to con-tain an approximately optimal path between two querypoints. By varying the parameter, k, that controls thedensity of the graph, we are able to get arbitrarily closeto optimal.(2) We report on an implementation in C++ of our path-net algorithm. The implementation is part of a moreextensive system, called WRP-Solve, that has beenbuilt, with a convenient graphical user interface, tocompare various approaches to route planning in weightedregions. In addition to the pathnet algorithm, the sys-tem contains implementations of at least four other ap-proaches to solving the WRP, and the user can freelyselect among them.The software has been integrated within an extensivemilitary simulation system, ModSAF, by our indus-trial collaborators at Hughes Aircraft. We expect torelease the WRP-Solve code to the public domain.(3) We provide experimental results comparing the path-net approach to other approaches to the WRP. We

present results obtained in both real and simulateddatasets.Related WorkThere are numerous papers on optimal route planning inweighted terrain maps. We refer the reader to the survey[15] for pointers to the literature.The main theoretical results known for the weighted re-gion problem are presented in Mitchell and Papadimitriou [17].They give an algorithm, based on the \continuous Dijkstramethod", to �nd a path whose weighted length is guaran-teed to be within a factor (1 + �) of optimal, where � > 0is any user-speci�ed degree of precision. The time complex-ity of the algorithm is O(E � S), where E is the number of\events" in the continuous Dijkstra algorithm, and S is thecomplexity of performing a numerical search to solve the fol-lowing subproblem: Find a (1 + �)-shortest path from s tot that goes through a given sequence of k edges of the tri-angulation. They show that E = O(n4) and that there areexamples where E can actually achieve this upper bound.The numerical search can be done using a form of binarysearch that exploits the local optimality condition: An op-timal path bends according to \Snell's Law of Refraction"when crossing a region boundary. (The earliest reference wehave found to the use of Snell's Law in optimal route plan-ning applications is to the work of Warntz [23].) This leadsto a bound of S = O(k2 log(nNW=�)) on the time neededto perform a search on a k-edge sequence, where N is thelargest integer coordinate of any vertex of the triangulation.Since one can show that k = O(n2), this yields an over-all time bound of O(n8L), where L = log(nNW=�) can bethought of as the bit complexity of the problem instance.The algorithm of [17] assumes that the start (source)point is �xed, and computes a representation of optimalpaths from the start to all other points (a form of \short-est path map"). If the start point is moved, the algorithmwould need to be run all over again from the new start point.In contrast, our new algorithm computes a data structurethat can be used for path queries between pairs of points.(The query time, though, is not logarithmic, as is the case ifone builds a shortest path map and queries with a new goalpoint.) Further, the algorithm of [17] has worst-case runningtime that is logarithmic in 1=�, while our new algorithm islinear in 1=�; however, the worst-case dependence on n ismuch better for the new algorithm: O(n3) versus O(n8).Finally, in contrast with the algorithm of [17], our new al-gorithm has been fully implemented and its practicality hasbeen shown.Various special cases of the weighted region problem ad-mit faster and simpler algorithms. For example, if the weightedsubdivision is rectilinear, and path length is measured ac-cording to weighted L1 length, then e�cient algorithms forsingle-source and two-point queries can be based upon search-ing a path-preserving graph [2]. Similarly, if the regionweights are restricted to f0; 1;1g (while edges may havearbitrary (nonnegative) weights), then an O(n2) algorithmcan be based on constructing a path-preserving graph sim-ilar to a visibility graph [6]. This also leads to an e�cientmethod for performing lexicographic optimization, in whichone prioritizes various types of regions according to which ismost important for path length minimization.

2 PreliminariesWe let S denote a planar polygonal subdivision having con-vex faces. (In the event that the input subdivision has non-convex faces, we �rst convexify (e.g., by triangulation).) Wewill assume that S is given to us in a convenient data struc-ture that allows the usual basic operations to be done inconstant time; e.g., the quad-edge data structure [7] is onepossibility (a variant of which is used by our code).Let n denote the total number of vertices of S. Then Salso has O(n) faces and edges. Each face f has an associ-ated integer weight �f 2 f0; 1; : : : ;W;+1g. The weight ofan edge e is also an integer �e 2 f0; 1; : : : ;W;+1g and isassumed to be at most minf�f ; �f 0g, where f and f 0 are thefaces incident on e. (In the event that the input does notspecify a weight for e, we de�ne �e = minf�f ; �f 0g.)A path is said to be locally optimal (an LO-path) if anin�nitesimal perturbation of it does not result in its weightedlength decreasing. The following properties of LO-paths inweighted regions are important to our algorithm; see [17] forproofs and further details.(1) An LO-path is piecewise-linear, with bend points onlyat vertices or on edges of the subdivision.(2) If an LO-path bends at a point on an edge, while cross-ing that edge, then it does so in a manner that obeysSnell's Law of Refraction: �f sin � = �f 0 sin �0 where� and �0 are the angles of incidence and refraction re-spectively, and �f and �f 0 denote the correspondingface weights. (The angle of incidence (refraction) is de-�ned to be the angle between the incoming (outgoing)segment and the normal to the edge.)(3) If an LO-path bends at a point on an edge, while en-tering the edge at that point (turning to follow theedge for some distance), then it enters the edge at thecritical angle of refraction, �c = sin�1(�e=�f).(4) An LO-path cannot be incident on an edge at an anglegreater than the critical angle, �c.3 The Pathnet AlgorithmThe pathnet algorithm constructs a graph, a pathnet G =(V;E), on the vertices V of the subdivision. The basic ideais simple: We discretize the continuum of orientations abouteach vertex v 2 V , using k evenly-spaced directions to ap-proximate the full range [0; 2�]. Within each of the k conesdetermined at v, we determine a possible edge (a link, whichis a chain of segments, crossing edges of the subdivision)joining v to another vertex, u, of S, or to a critical pointof entry on some edge of S. It is possible that no link iscreated for a given cone; but there is at most one link percone.The (possible) link is determined by tracing out a locally-optimal path (refraction ray) from v at each of the two ori-entations bounding the cone, advancing both paths (rays) inlock-step across faces of S, obeying Snell's Law of refractionwith each crossing, until the two refraction rays �rst en-counter a \topological fork" { the edge sequence of one ray�rst starts to di�er from the edge sequence of the other ray.(Actually, for the sake of e�ciency, we advance all k rays outof v in lock step, so that each ray is traced only once, nottwice.) In other words, we determine the longest commonedge sequence pre�x of the refraction rays bounding eachcone. This fork event must be of one of the following types:

(a) The two refraction rays are incident on distinct edgesof S { then there is at least one splitting vertex, u, onthe face f where they �rst fork, such that u \splits"the two paths. We now create a link (an edge in E) be-tween v and (any) one such vertex u. Associated withthis link is a pointer to the polygonal chain consistingof the line segments (along either of the two rays) thatbrought us to face f , and the segment joining the entrypoint onto f with the vertex u. This chain representsan approximation to a refraction path from v to u. Westore its length as the weight of the edge (v; u) 2 E.Refer to Figure 3.
v

u
Figure 1: A cone determined by two refraction rays fromvertex v gets split by vertex u.Lemma 1 There exists a unique locally-optimal pathfrom v to u that stays within the refraction cone thatis split by u.Proof. The proof follows from the monotonicity lem-mas proven in [17]. utRemark. Optionally, we can search for a chain linkingv and u that is arbitrarily close to being a refraction(locally optimal) path; our code does this by a sim-ple binary search, or a coordinate descent method. Inpractice, this may lead to somewhat shorter paths, andbetter \looking" paths in some cases. However, we seeno way to make the worst-case error analysis take ad-vantage of this extra optimization. We omitted it fromthe subset of experiments reported in this abstract.(b) The two rays are incident on the same edge, e, but oneor both rays are incident at an angle whose magnitudeis greater than that of the critical angle at e.Lemma 2 There exist at most two locally-optimal paths(corresponding to incidence angles +�c and ��c) fromv to a critical entry point on edge e that stays withinthe refraction cone.Proof. The proof follows from the monotonicity lem-mas proven in [17]. utWe can trace a critical refraction path from a criticalentry point u 2 e back to v, through the cone, since

the edge sequence is known, and the critical angle at ewill therefore determine all of the angles of incidencealong the edge sequence (even though the point u isnot discovered until we trace the path forward again).(Refer to Figure 3.) A pointer to this chain is storedwith the link (v; u) 2 E, and its length is recorded asthe weight of the pathnet edge. Furthermore, the crit-ical entry point u is instantiated as a new vertex of thepathnet (it is added to V), and it is linked to neigh-boring such critical points along e (or the endpoints ofe). Note that, in total, no more than O(kn) criticalentry points will ever be added to the pathnet.
�c u ev

Figure 2: A cone determined by two refraction rays fromvertex v gets split at edge e, due to a critical entry pointu 2 e.Remark. If one ray is incident on e at an angle greaterthan �c and the other ray is incident at an angle lessthan ��c, then it is possible that within the refractioncone there are two critical refraction paths incident one. However, if both rays are incident at angles greaterthan �c (or both < ��c), then there will be no criticalrefraction path within the cone.(c) Both rays encounter the outer boundary of the subdi-vision. In this case, we simply cease the tracing of thecone, as no link of the pathnet will be made within it.Once the pathnet is constructed, we search for a pathbetween two vertices simply by running Dijkstra's shortest-path algorithm within the pathnet. (Alternatively, we canapply standard heuristic search variants of Dijkstra's short-est path algorithm, such as the A� algorithm [15]; however,our experiments reported here are all based on using Dijk-stra's algorithm directly, not with the A� algorithm.) Forarbitrary start/goal points, we �rst do point location queriesto locate them in the subdivision, and then temporarily linkthem into the pathnet, by applying the same refraction raytracing that was done from each vertex of S, in construct-ing G. Then, a search of the augmented pathnet yields thedesired path.4 AnalysisThe pathnet is a graph with O(kn) nodes, since each ofthe k cones at each of the n vertices can produce at mostone link. The propagation of the two rays de�ning a conecan be truncated after at most O(n2) steps (and typicallyit does not require more than about 5-10, in practice). This

follows from Lemma 7.1 of [17], which proves that a locallyoptimal path that does not go through vertices or criticalpoints can cross each edge at most O(n) times, implying anedge sequence of at most O(n2) crossed edges. Thus, we getan overall worst-case time complexity of O(kn3), to build adata structure of size O(kn).It now remains to prove that a shortest path in the path-net approximates the shortest weighted path between twopoints. We observe that if a large enough number of conesis allowed for each vertex then any vertex to vertex path iscontained in a single cone and the pathnet algorithm pro-vides exact answers to shortest path queries. This is nolonger the case when the number of cones is small.Next, we observe that if we use k cones per vertex, thenthe angle between two rays that de�ne a cone begins at an-gle 2�=k, and, after multiple refractions of the rays alonga common edge sequence, never gets larger than O(W=kw),where W is the maximum �nite weight and w is the min-imum nonzero weight. (This follows from simple geometryof Snell's Law.)Consider an optimal path, ��, from a vertex s to a vertext. We will prove the existence of a path, �, that lies in thepathnet whose (weighted) length is at most (1+�) times thatof ��, with an appropriate choice of � (which will depend onk). Now, �� is partitioned into subpaths by the vertices andcritical entry points along ��. Consider one such subpath of��, call it ��u;v, joining vertex u with vertex v. (The case ofa subpath joining two critical entry points, or a vertex anda critical entry point, is handled similarly.)Lemma 3 There exists a path, �u;v, from u to v, within thepathnet, whose weighted length is at most (1 + �) times thatof ��u;v.Proof. Consider the cone with apex u that locally containsthe optimal subpath, ��u;v.If v is the split point for this cone, then the claim isimmediate: Since the angle between the two rays at thetime of the split is O(W=kw), the ratio of the error to thepath length is O(W 2=kw).If v is not the split point for the cone, then utThe proof uses induction on the number of subpaths in��. The lemma above proves the base case, in which thereis a single subpath. We now make the following inductionhypothesis: If �� has K or fewer subpaths, then there existsa path within the pathnet that approximates �� to withinfactor (1 + �).Consider now an optimal path ��, from vertex s to vertext, that has K + 1 subpaths. Consider the cone with apexs that locally contains ��. If this cone is split by a vertexv that is the �rst vertex after s on ��, then we are done,since the subpath of �� from s to v is a link within thepathnet, and we can appeal to the induction hypothesis andthe lemma.Thus, assume that the �rst vertex after s on �� is notthe splitting vertex v. Let P be the polygon determined bythe two refraction rays bounding the cone, stopping the raysat the points where they exit the face f where the rays are�rst split, and closing the polygon P using the boundary off (which contains the splitting vertex v).The details of the analysis are somewhat tedious. Weremark that it is necessary for the analysis to assume thatthere is a bounded minimum angle, �min, among the internalangles de�ning a face of the subdivision, and that the ratio,

W=w, of the maximum non-in�nite weight to the minimumnon-zero weight is bounded. The result isTheorem 4 In time O(kn3) a pathnet of size O(kn) can beconstructed such that, when searched, it yields paths that arewithin factor (1 + �) of optimal, where � = O(W=wk�min).Our approach is strongly motivated by results on ap-proximating Euclidean shortest paths among obstacles (as inClarkson [3] and Mitchell [16]), t-spanners [9], and approxi-mation methods devised for minimum spanning trees [24].5 Other AlgorithmsIn order to determine the practicality and relative e�ective-ness of our new algorithm, we implemented several othermethods, for experimental comparison.5.1 Grid-Based AlgorithmThe most basic and most popular practical approach tosolving path planning problems in varied terrain is to usa discretization into a uniform grid, and then to search the(weighted) grid graph for shortest paths. This method hasmany advantages over other more complex algorithms: (1)it is simple to implement; (2) it is particularly well suitedfor problems in which the input data structure comes as agrid; and (3) it is highly versatile, allowing for many otherheuristic cost criteria (e.g., charging for turns) to be addedquite easily.We assume as input an array of sampled values of theunderlying weight function F , giving values, Fi;j , at regulargrid points indexed by (i; j). Since our pathnet algorithmassumes as input a polygonal subdivision, not a weight array,our grid algorithm initializes a weight array by sampling thepolygonal subdivision at grid points (whose spacing, , is auser-speci�ed parameter).The grid data points determine a grid graph, whose ver-tices are the grid points and whose edges link \nearby"grid points. Most grid-based algorithms assume a 4- or 8-connectivity of the grid, joining point (i; j) to its four im-mediate neighbors ((i; j + 1), (i; j � 1), (i� 1; j), (i+ 1; j)),plus possibly the diagonals.One of the main drawbacks to a grid graph solution isthat, even for a trivial (constant) weight function F , there isan inherent error in distance estimate, since we measure griddistance instead of Euclidean distance. For 4-connectivitythis \digitization bias" (aliasing) results in an error factor ofp2; for 8-connectivity, it results in a factor of (p2+1)=p5 =1:08. See [18, 20] for discussions on the digitization biasproblem, and on di�erent distance transforms that can beused to address it.One approach to reducing grid bias is to increase theconnectivity of the grid. Thus, the grid-based algorithmthat we implemented includes an enhancement to the usualmethods, in that we permit higher degrees of connectivity:We connect (i; j) to each of the grid points (i + I; j + J),for I; J 2 f�K;�K + 1; : : : ; K � 1; Kg, except those thatcan be reached directly (without error) by two shorter edges(e.g., we do not connect (i; j) to (i + 2; j + 2), since thisis e�ected by two diagonal connections already). Thus, forK = 1; 2; 3; 4, we get connectivity of 8, 16, 32, 48, respec-tively. Allowing this K as a parameter implies that, as Kgoes to in�nity, and the resolution goes to zero, the grid-based solution will in fact go to the true optimum. (The

dependence on K is O(1=K2).) This will allow a fair com-parison with our pathnet algorithm, for which we can alsoget arbitrarily close to optimum by increasing a parameter(k, the number of cones).Since our underlying input function F is given in polyg-onal subdivision form, we assign weights to the edges in thegrid graph by computing the actual weighted cost of the di-rect (straight) line segment joining the endpoints. This isdone by a simple ray tracing (walk) through S, integratingF along the segment.5.2 Edge Subdivision AlgorithmWe also devised and implemented another natural methodfor searching a weighted subdivision for paths, based on dis-cretizing the edges of the subdivision (rather than discretingthe faces, as is the case with a grid-based method). Thismethod has been implemented and used by several others,including Mitchell (who implemented it as part of a sys-tem built at Hughes, for the DARPA ALV project in 1985),Johansson [8] (who implemented it for use in uid ow com-putations for injection molding), and Lanthier, Maheshwari,and Sack [12] (who, in indpendent work closely related workour own, have conducted experiments on this, and related,practical methods for the WRP).The basic edge subdivision algorithm is as follows. Foreach edge e of the subdivision, we place b�e=�c new (Steiner)nodes, evenly spaced along e. Here, � is a parameter of thealgorithm, and �e denotes the weight of edges e. We con-struct (weighted) edges joining each such Steiner node withall other nodes (both original vertices and Steiner nodes)that appear on the boundary of each of the two faces inci-dent on e. In this way, each face of the subdivision corre-sponds to a complete graph on the set of vertices and Steinernodes that appear on its boundary. Since faces are assumedto be convex, the line segment joining any pair, u and v, ofboundary points lies entirely within the face, so we assignthe weight of (u; v) to be juvj � �, where � is the weight ofthe face. (Note that the shortest path joining u and v neednot be the single edge, (u; v), especially if the weight � ofthe face is very high.)The edge subdivision algorithm has the following designchoices: (1) the parameter � (or one can specify a maximumnumber of Steiner points on any one edge); and (2) howto space the points on an edge, e.g., evenly (as we do), ingeometric progression (as Papadimitriou [19] does for short-est paths in <3), or in some other way. We have not yetseen how to use uneven spacing to achieve provably bet-ter approximation bounds; this may be a subject of futureexperimental analysis.5.3 Other ApproachesOur WRP-Solve system also has a couple of other heuristicalgorithms implemented:(1) Search the (weighted) edge graph of S for a shortestpath between two vertices. (If the start/goal are notvertices of S, then we simply augment the graph byconnecting them to the vertices of the convex contain-ing cell.) This method has the advantage of being verysimple and fast, but of course it can produce paths thatare arbitrarily bad with respect to optimal.(2) Search the dual graph of S, using edge weights thatare the average of the two adjacent face weights, timesthe distance between the centroids of the faces. Again,

this method is fast, but can yield arbitrarily bad pathswith respect to optimum. (Note that if the faces areall unit squares { i.e., S is a regular grid { then weare simply doing a 4-connectivity grid graph method,and the approximation error factor is then bounded byp2.)Other approaches being currently designed for theWRP-Solve system include a simulated annealing approach (using,e.g., a starting seed path determined by either of the fastheuristics (1) or (2) above, together with a post-processinglocal optimality stage), and more sophisticated grid-basedor quadtree-based algorithms. It will also be interesting toimplement and test hybrid methods of computing optimalpaths, using the best aspects of pathnets, grid graphs, edgesubdivisions, etc.6 Implementation and Experimental SetupThe WRP-Solve system is implemented in C++. Experi-ments were run on a set of SGI Indigos with R5000 proces-sors at 150MHz running IRIX6.2. Internal memory size was64MB for all, 512KB level 2 and 32KB separate data andinstruction level 1 caches. Times quoted in the experimentswere measured only on the SGI. For memory intensive exper-iments we used an Intel Pentium Pro computer at 180MHzwith 128MB of memory.6.1 Design choicesAll of the algorithms model weighted subdivisions and gridsampled data with an undirected network where the nodes ofthe network correspond to points in the plane and the edgeweights represent the weighted distance between nodes. Thenodes are associated to a feature of the subdivision { vertex,edge, face { or to a Steiner point added by sampling an edgeor a face of the subdivision.Network representation is dependent on the search algo-rithm. For example, the edge subdivision algorithm doesnot require an explicit representation of the links betweennodes on the same face. Determining the neighbors of anode during the search algorithm and the weighted lengthof the links can be done while the search algorithm is exe-cuted. This network representation would require no morestorage than storage for the nodes but it would be ine�cientin terms of execution time because dynamically determiningthe neighbors of a node has an impact on performance. Onthe other hand, building a complete representation { nodesand adjacency lists { for a large sampled grid is not practicalgiven the large number of nodes and links.The requirements that each algorithm imposes upon therepresentation of the search network had to be balanced withthe fact that the experimental setup must compare the per-formance of algorithms. The choice was made to use the thesame data structures for all algorithms.The advantage of this solution is that the code used toimplement the search algorithm for all the approximationalgorithms is the same. This means that the number of ele-mentary operations to compute a shortest path can be usedto compare the performace of the algorithms. On the otherhand, a specialized implementation for any one of the searchmethods would result in better performance { in terms ofspace and time used.

6.2 DatasetsThe Weighted Regions Problem has practical applications inmultiple domains, including decision support systems for themilitary [13, 14], manufacturing [8] and Geographic Informa-tion Systems. In practice, datasets { weighted subdivisions{ have up to 10000 vertices. Most applications use smallersubdivisions { for example in the manufacturing applicationthe size of the dataset is less than a 1000 vertices.The experiments were run with a mix of real terrainand arti�cially generated datasets. The drawback of us-ing real datasets is the presence of features that are degen-erate or topologically inconsistent. In the implementationthese problems are accounted for by letting the algorithmsabandon computing a link { locally optimal path { if theunderlying data structure is inconsistent.Real World Datasets. The subdivisions used for the ex-periments are extracted from the \microterrain" elementspresent in the Hunter-Ligett Compact Terrain Database (CTDB).The terrain database is used in the ModSAF[13, 14] train-ing simulator for visibility and shortest path computation.The weighted subdivision corresponding to microterrain el-ements is obtained by assigning weights to the faces of thesubdivision using a heuristic that assigns to each face inte-ger weights between 3 and 12. The number of di�erentweights used is higher than that which is typically used inpractice by ModSAF; it was chosen to make shortest pathplanning even more challenging for our experiments.The sizes of the weighted subdivisions vary from less than100 vertices to around 1000 vertices. The faces of the sub-division are mostly triangles, although buildings and otherman-made features have more vertices. The complicatingproblem with this data is the relatively large number oftopologically incorrect features (e.g. overlaping faces anddangling edges).Simulated Datasets. Arti�cial datasets are generated us-ing two methods:1. One method starts with a regular rectilinear grid andrandomly perturbs the positions of the vertices, whileconstraining the perturbation so that all faces of thesubdivision remain convex.2. A second method uses Delaunay triangulations of pointsets (based on the algorithm and code of Devillers [4]).In one set of datasets the vertices of the subdivision aregenerated uniformly at random within a square. An-other set of triangulations is designed to yield nonuni-form point distributions, by concentrating a majorityof the points in a few small disks; the goal is to simu-late the irregular distribution of points encountered inapplications.Each of the arti�cial datasets is generated with a vari-able number n of vertices, where n = 100, 200, 500, 1000,2000, 5000, 10000 and 20000. Larger subdivisions are possi-ble, but these datasets incur run-time penalties { for someof the algorithms we compare, these subdivisions lead todata structures that exceed the amount of internal mem-ory available. It is an open question how the shortest pathalgorithms fare experimentally in external memory settings.6.3 Generation of Start/Goal PairsThe WRP-Solve system allows start and goal points to bechosen arbitrarily. A simple (worst-case linear-time) algo-

rithm is used for point location, with special code to handlestart/goal points that fall on edges/vertices of the subdivi-sion.Start/goal point pairs are picked at random with a min-imum Euclidean distance between start and goal of 20% ofthe diameter of the dataset.Start and goal points act as special vertices of the searchnetwork. These vertices are inserted when the search be-gins and deleted when the search ends. Time measurementsinclude the time to insert the special vertices because thistime (exclusive of point location) is partially dependent onthe search algorithm. For example, inserting a vertex intoa pathnet takes more time than the time to insert a vertexin a grid. In contrast, deleting vertices is a standard oper-ation that involves the same operations for all algorithmsimplemented.6.4 Data structuresThe choice of representation for the subdivision and networkdata structures inuences directly the performance of thealgorithms. This e�ect is lessened by measuring the timeperformance for the each algorithms measured on the CPUclock and by counting the number of elementary operationsperformed by each algorithm during a shortest path search.Subdivision. The natural choice for representing the inputsubdivisions is the quad-edge [7] data structure. Because ofthe limited operations needed, and the fact that the datasetsare terrains, the implementation is simpli�ed: Rot (edge-dual) and Flip (orientation) are not implemented.Faces and vertices of the planar subdivision are objectswith attributes. The vertices have (x; y)-coordinates andfaces have weights. In all experiments the edges have thedefault weight which is the minimum weight of the incidentfaces.It is possible to de�ne obstacles in the subdivision whenthe weight of a face is over a user-de�ned threshold. In thiscase, no shortest path is allowed to cross an obstacle face.Free (no cost) regions are implemented by using low unitweight faces. Most applications use only a small number ofweights. For example, in applications of WRP-Solve toair tra�c control, Seagull Technologies, Inc. uses heuristicsto assign �ve di�erent weights to regions. The experimentsuse f1; : : : ; 15g for weight values.Search Network. The search network is a data structuredesigned to answer e�ciently membership queries like \Isthere a node at vertex v of the planar subdivision?" Hashtables are used to store the nodes because they are e�cient,simple and a robust implementation is available from theTcl library. The average size of the buckets used in the hashtables was always less than two.To speed things up separate hash tables are maintainedfor each of the objects making up a weighted subdivision:vertices, edges and faces.6.5 Robustness issuesThe pathnet algorithm assumes a topologically correct andconsistent weighted subdivision. Subdivisions can be inputinteractively with click and drag. After an input operation,WRP-solve performs a topological check to verify consis-tency before a new edge is added to the data structure.The procedure that solves Snell's Law of Refraction foreach crossing is particularly sensitive to numerical errors.

An exact solution requires solving a 4th degree polynomial.If the refraction path is su�ciently close to a subdivisionvertex and an incorrect decision is made { because of oatingpoint rounding { the program will go into an in�nite loop.To address this issue, each refraction case subproblem issolved with the following constraint: if the crossing point iswithin a small distance { a constant fraction of edge length,divided by the number of cones { of an endpoint, then thepath \snaps" to the edge endpoint.7 ResultsMeasured parameters We measured the following param-eters for all shortest path queries:� The number of operations performed during each short-est path search; here, \operations" counts the numberof nodes visited by the search algorithm and the num-ber of insertion and update operations to the heap.� The time spent during each search. We measured twotimes: (1) the elapsed time which measures the in-terval of time elapsed between the start of the searchand the end of the search - as returned by the func-tion gettimeofday and (2) the user and system times asmeasured by getrusage. The reason was that the ex-periments were run on hardware in use by other usersand the elapsed time might prove an incorrect mea-sure. On the SGI/IRIX architecture used during theexperiments, getrusage returns its measurement up toa resolution of microseconds. On Linux, getrusage re-turns times with a resolution of 10 miliseconds. Thus,all time measurements have been performed only onthe SGI architecture.� The length of the shortest path approximation and theactual Euclidean length between the start and goalparameters.� The number of nodes in the network.In addition to the above values, which were measured for allmethods, we also measured for the pathnet algorithm someadditional parameters, including the number of critical entrypoints, the number of simple and the number of chain links,the average degree of the nodes of the search network, andthe average number of edge crossings in a chain.Average query time vs. approximation factor The path-net achieves consistently approximation factors of less than5 percent, for all choices of parameters that we tested, andfor all datasets. Figure 3 presents a plot of the average timerequired to process a query versus the approximation factor.The edge subdivision algorithm achieves the same approx-imation factors using more processing time. The datasetbeing used for the experiment is a Delaunay triangulationwith 1000 vertices. The grid used in the experiment is 8-connected. Results show that the contenders for accurateresults are the edge and the pathnet algorithms. The ap-proximation factor obtained with the grid algorithm showsthe digitization bias, although by using a higher degree ofgrid connectivity results for the grid algorithm should im-prove.Preprocessing time and memory use for pathnet algorithmPreprocessing times required to build pathnets for di�erentparameter values are measured. Results show that building

the search network takes time proportional to the numberof cones. Build times depend on the number of nodes inthe search network, see Figure 5. Triangulations { terrainand Delaunay data sets { have larger size pathnets than gridsubdivisions.The pathnet algorithm achieves good approximation re-sults for shortest paths even when the number of cones usedis relatively small { less than 20. The data shows that thetime to preprocess a subdivision with 1,000 nodes is less than10 seconds. Note that in practical use the pathnet is builton demand and the preprocessing penatly is correspondinglylower. For the same subdivision the edge algorithm is onaverage 2.5 times slower for the same approximation factor.The grid { 8-connected { for a weaker approximation factoruses 10 times more.The amount of memory used by the pathnet algorithm isproportional to the number of cones, see Figure 4. Arti�cialdatasets have less variation than terrain data.Number of operations The edge and pathnet algorithmsperform fewer operations than the grid algorithm to achievethe same approximation factor. The pathnet has the ad-vantage of links spanning across multiple faces. Figure 6presents the average number of nodes visited per unit dis-tance for di�erent approximation factors. Scaling to unitdistance allows an estimate of the time required to completea shortest path query { a useful feature in an applicationwhere time resources are limited.Complementary to the average number of operations isthe average time required to plan a shortest path for a unitdistance, see Figure 7.Approximation factors for pathnets The experiment looksat the correlation between approximation factors and thenumber of cones used to build a pathnet. Figure 8 links theparameter { number of cones { necessary to achieve a givenapproximation factor, with respect to the optimal path.The x-axis represents the number of vertices. For arti�-cial datasets the number of cones remains relatively constantand decreases as the number of vertices increases.For a given approximation factor the number of conesis the smallest number such that all shortest path queriestested are within the approximation factor. For example, apathnet with 15 cones will in most cases achieve an approx-imation factor of 2 percent. A pathnet built with 20 conesachieves on average a 1 percent approximation factor.The peaks in the plot indicate that some data sets requirea large number of cones for a good approximation factor.A useful observation is that the "behavior" of the datasetremains the same over several values of the parameter. Inthis case, the approximation factor achieved with a smallnumber of cones is a predictor on the approximation factoronce the number of cones increases.8 ConclusionIn this paper, we have taken a new, practical look at theproblem of computing low-cost paths in weighted terrains.Our main contribution is a new method to compute paths inweighted terrains. The method has been fully implementedand tested in planar weighted regions, and comparisons havebeen made with several other simple and natural heuristicalgorithms, such as regular grids and edge subdivision. Ourexperiments show that the pathnet method performs verywell in practice and is highly competitive with other meth-ods, generally yielding a shorter path in less query time.

One other advantage of the pathnet algorithm is that itsform of discretization is independent of the scale of the dataset. The grid and the edge subdivision algorithms dependin their choice of parameters on the (Euclidean) sizes of thefeatures (edges and faces) in the map.While the worst-case dependence on � is worse than thatof Mitchell and Papadimitriou [17], the worst-case depen-dence on n is substantially lower, both in terms of time andspace complexity: O(n3) versus O(n8) time and O(n) versusO(n4) space.Several extensions to our work are natural:1. Our method applies directly to polyhedral surfaceswith weighted facets. The only change to the imple-mentation necessary is to modify the ray tracing proce-dure to compute the refraction path in the \unfolded"version of the local geometry. This code exists already,and will soon be fully tested.2. The same method also applies to cases of weight func-tions that are not necessarily constant within faces ofthe subdivision (or facets of the polyhedron). For ex-ample, we could consider piecewise-linear weight func-tions, or other simple-to-describe weight functions forwhich we can compute the local optimality conditionwhen a path crosses a region boundary. We also planto consider weight functions that vary with time.3. At the other extreme, we can apply our method to theunweighted (constant weight) case too, obtaining anapproximation for shortest paths on polyhedral sur-faces. For this problem, we know that a locally op-timal path can cross only a linear number of edges(since each edge can be crossed at most once), so thecomplexity becomes O(kn2). Further, the actual per-formance in practice may be close to linear, since theaverage running time is O(knm), where m is the av-erage number of edges crossed by a cone before itsde�ning rays get split; in practice, we expect m to bemuch less than n.In conclusion, we should add that there are many otherinteresting experiments still to be conducted. In particular,we plan to conduct direct comparisons between the meth-ods presented here and the methods recently developed in aparallel e�ort by Lanthier, Maheshwari, and Sack [12]. Fur-ther, it would be interesting to compare our methods' perfor-mance to the simulated annealing approaches implementedby Kindl, Shing, and Rowe [10, 11]. By combining di�erentheuristic methods, we expect that the ultimate winner inour quest for better heuristics will be a \hybrid" method,which can take advantage of data given both in terms ofregular grids and in terms of polygonal subdivisions.References[1] R. Alexander and N. Rowe. Path planning by optimal-path-map construction for homogeneous-cost two-dimensional re-gions. In Proc. IEEE Internat. Conf. Robot. Autom., 1990.[2] D. Z. Chen, K. S. Klenk, and H-Y. T. Tu. Shortest pathqueries among weighted obstacles in the rectilinear plane.In Proc. 11th Annu. ACM Sympos. Comput. Geom., pages370{379, 1995.[3] K. L. Clarkson. Approximation algorithms for shortest pathmotion planning. In Proc. 19th Annu. ACM Sympos. TheoryComput., pages 56{65, 1987.[4] O. Devillers. Robust and e�cient implementation of theDelaunay tree. Report 1619, INRIA Sophia-Antipolis, Val-bonne, France, 1992.

[5] D. H. Douglas. Least cost path in geographic informationsystems. Research note No. 61, Department of Geography,University of Ottawa, Ottawa, Ontario, August 1993.[6] L. Gewali, A. Meng, J. S. B. Mitchell, and S. Ntafos.Path planning in 0=1=1 weighted regions with applications.ORSA J. Comput., 2(3):253{272, Summer 1990.[7] L. J. Guibas and J. Stol�. Primitives for the manipulationof general subdivisions and the computation of Voronoi dia-grams. ACM Trans. Graph., 4:74{123, 1985.[8] P. Johansson. On a weighted distance model for injec-tion moulding. Link�oping Studies in Science and Technol-ogy, Thesis No. 604 LiU-TEK-LIC-1997:05, Division of Ap-plied Mathematics, Link�oping University, Link�oping, Swe-den, February 1997.[9] J. M. Keil and C. A. Gutwin. Classes of graphs which ap-proximate the complete Euclidean graph. Discrete Comput.Geom., 7:13{28, 1992.[10] M. Kindl, M. Shing, and N. Rowe. A stochastic approachto the weighted-region problem, I: The design of the pathannealing algorithm. Technical report, Computer Science,U.S. Naval Postgraduate School, Monterey, CA, 1991.[11] M. Kindl, M. Shing, and N. Rowe. A stochastic approach tothe weighted-region problem, II: Performance enhancementtechniques and experimental results. Technical report, Com-puter Science, U.S. Naval Postgraduate School, Monterey,CA, 1991.[12] M. Lanthier, A. Maheshwari, and J. Sack. Approximatingweighted shortest paths on polyhedral surfaces. In Proc.13th Annu. ACM Sympos. Comput. Geom., page To appear,1997.[13] M. J. Longtin. Cover and concealment in ModSAF. In Proc.Fourth Conference on Computer Generated Forces and Be-havioral Representation, pages 239{247. STRICOM-DMSO,1994.[14] M. J. Longtin and D. Megherbi. Concealed routes inModSAF. In Proc. Fifth Conference on Computer Gener-ated Forces and Behavioral Representation, pages 305{313.STRICOM-DMSO, 1995.[15] J. S. B. Mitchell. An algorithmic approach to some prob-lems in terrain navigation. In S. Sitharama Iyengar and Al-berto Elfes, editors, Autonomous Mobile Robots: Perception,Mapping, and Navigation, pages 408{427. IEEE ComputerSociety Press, Los Alamitos, CA, 1991.[16] J. S. B. Mitchell. L1 shortest paths among polygonal obsta-cles in the plane. Algorithmica, 8:55{88, 1992.[17] J. S. B. Mitchell and C. H. Papadimitriou. The weightedregion problem: Finding shortest paths through a weightedplanar subdivision. J. ACM, 38:18{73, 1991.[18] J. S. B. Mitchell, D. W. Payton, and D. M. Keirsey. Planningand reasoning for autonomous vehicle control. Internat. J.Intell. Syst., II:129{198, 1987.[19] C. H. Papadimitriou. An algorithm for shortest-path mo-tion in three dimensions. Inform. Process. Lett., 20:259{263,1985.[20] I. Ragnemalm. The Euclidean distance transform. Link�opingStudies in Science and Technology, Ph.D. Dissertation 304,Department of Electrical Engineering, Link�oping University,Sweden, 1993.[21] R. F. Richbourg, N. C. Rowe, M. J. Zyda, and R. McGhee.Solving global two-dimensional routing problems usingSnell's law. In Proc. IEEE Internat. Conf. Robot. Autom.,pages 1631{1636, Raleigh, NC, 1987.[22] N. C. Rowe and R. F. Richbourg. An e�cient Snell'slaw method for optimal-path planning across multiple two-dimensional, irregular, homogeneous-cost regions. Internat.J. Robot. Res., 9:48{66, 1990.[23] W. Warntz. Transportation, social physics, and the law ofrefraction. The Professional Geographer, 9(4):2{7, 1957.[24] A. C. Yao. On constructing minimum spanning trees in k-dimensional spaces and related problems. SIAM J. Comput.,11:721{736, 1982.

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

A
pp

ro
xi

m
at

io
n

fa
ct

or

Time/query (microseconds)

Pathnet
Edge subdivision

Grid (8-connectivity)

Figure 3: Approximation factor for the pathnet, grid andedge subdivision algorithms with respect to shortest pathquery time

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

N
um

be
r

of
 n

od
es

 in
 p

at
hn

et

Size of subdivision (vertices)

4 Cones
6 Cones
8 Cones

12 Cones
16 Cones
20 Cones
24 Cones
32 Cones
36 Cones
50 Cones

100 Cones
200 Cones

Figure 4: Number of nodes in pathnets with respect to thesize of the weighted subdivision

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Pr
ep

ro
ce

ss
in

g
tim

e
(m

ili
se

co
nd

s)

Data set size (in vertices)

4 Cones
6 Cones
8 Cones

12 Cones
16 Cones
20 Cones
24 Cones
36 Cones
50 Cones

100 Cones
200 Cones

Figure 5: Time required to build a pathnet search graphversus number of cones for each vertex of the weighted sub-division

0

1

2

3

4

5

6

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

O
pe

ra
tio

ns
/u

ni
t d

is
ta

nc
e

Approximation factor

Pathnet
Edge subdivision

Grid (8-connected)

Figure 6: Number of nodes visited with respect to the ap-proximation factor

1

2

4

8

16

32

64

128

256

512

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

T
im

e/
di

st
an

ce
 (

m
ili

se
co

nd
s)

Approximation factor

Pathnet
Edge subdivision

Grid

Figure 7: Average search time versus approximation factor,normalized to unit euclidean distance.

0

5

10

15

20

25

30

35

40

45

50

0 200 400 600 800 1000 1200 1400 1600 1800 2000

N
um

be
r

of
 c

on
es

Subdivision size (number of vertices)

Approximation factor vs. number of cones

0.1 %
0.2 %
0.5 %
1 %
2 %
5 %

10 %
15 %
20 %
25 %
50%

Figure 8: Maximum approximation factors for the pathnetalgorithm versus number of cones.

