A New Algorithm for Computing Shortest Paths in
Weighted Planar Subdivisions

(Extended Abstract)

Cristian S. Mata *

Abstract

We present a practical new algorithm for the problem of
computing low-cost paths in a weighted planar subdivision
or on a weighted polyhedral surface. The algorithm is based
on constructing a relatively sparse graph, a “pathnet”, that
links selected pairs of subdivision vertices with locally op-
timal paths. The pathnet can be searched for paths that
are provably close to optimal and approach optimal, as one
varies the parameter that controls the sparsity of the path-
net.

We analyze our algorithm both analytically and experi-
mentally. We report on the results of a set of experiments
comparing the new algorithm with other standard methods.

1 Introduction

For a given weight function, F : R — R, the weighted
length of an s-t path 7 in the plane is the path integral,
fw F(x,y)do, of the weight function along the path 7, link-
ing the start s to the goal t. The weighted region metric
associated with F' defines the distance dg(s,t) to be the in-
fimum over all s-t paths 7 of the weighted length of w. The
weighted region problem (WRP) is to find an optimal s-t path
according to the weighted region metric, dx, induced by a
given piecewise-constant weight function, F'. This problem
is a natural generalization of the shortest-path problem in a
polygonal domain: Consider a weight function that assigns
weight 1 to P and weight oo (or a sufficiently large constant)
to the obstacles (the complement of P).

The weighted region problem models the minimum-time
path problem for a point robot moving in a terrain of varied

*Department of Computer Science, State University of
New York, Stony Brook, NY 11794-4400, email: cris-
tian@cs.sunysb.edu; Supported by NSF (CCR-9204585 and
CCR-9504192) and by a grant from Hughes Aircraft.

tDepartment of Applied Mathematics and Statistics, State
University of New York, Stony Brook, NY 11794-3600, email:
jsbm@ams.sunysb.edu; Partially supported by NSF grants
CCR-9204585 and CCR-9504192, and by grants from Boeing
Computer Services and Hughes Aircraft.

Joseph S. B. Mitchell

types (e.g., grassland, brushland, blacktop, bodies of water,
etc), where each type of terrain has an assigned weight equal
to the reciprocal of the maximum speed of traversal for the
robot. It also arises in numerous other applications involv-
ing route planning in geographic data ([5, 15, 23]), military
mission planning and decision support ([1, 10, 11, 13, 14, 15,
21, 22]), and fluid flow in injection molding [8].

We assume that f is specified by a triangulation having
n vertices, with each face assigned an integer weight o €
{0,1,...,W,+0cc}. We can allow edges of the triangulation
to have a weight that is possibly distinct from that of the
triangular facets on either side of it; in this way, “linear
features” such as “roads” can be modeled.

This paper describes an algorithm to compute nearly op-
timal paths between two points in weighted polygonal sub-
divisions. We call the data structure built by the algorithm
a pathnet. The pathnet can be used to answer path queries
between pairs of points in the subdivision.

The new algorithm has been fully implemented (in C++)
and tested against various other approaches on a large set
of data. We report here on our experimental results.

Main Contributions

(1) We present a new algorithm for the weighted region
problem, and analyze its effectiveness in approximat-
ing an optimal path. The algorithm is based on con-
structing a graph, a pathnet, that is guaranteed to con-
tain an approximately optimal path between two query
points. By varying the parameter, k, that controls the
density of the graph, we are able to get arbitrarily close
to optimal.

(2) We report on an implementation in C++ of our path-
net algorithm. The implementation is part of a more
extensive system, called WRP-Solve, that has been
built, with a convenient graphical user interface, to

compare various approaches to route planning in weighted

regions. In addition to the pathnet algorithm, the sys-
tem contains implementations of at least four other ap-
proaches to solving the WRP, and the user can freely
select among them.

The software has been integrated within an extensive
military simulation system, ModSAF, by our indus-
trial collaborators at Hughes Aircraft. We expect to
release the WRP-Solve code to the public domain.

(3) We provide experimental results comparing the path-
net approach to other approaches to the WRP. We

present results obtained in both real and simulated
datasets.

Related Work

There are numerous papers on optimal route planning in
weighted terrain maps. We refer the reader to the survey
[15] for pointers to the literature.

The main theoretical results known for the weighted re-

gion problem are presented in Mitchell and Papadimitriou [17].

They give an algorithm, based on the “continuous Dijkstra
method”, to find a path whose weighted length is guaran-
teed to be within a factor (1 + €) of optimal, where ¢ > 0
is any user-specified degree of precision. The time complex-
ity of the algorithm is O(E - S), where E is the number of
“events” in the continuous Dijkstra algorithm, and S is the
complexity of performing a numerical search to solve the fol-
lowing subproblem: Find a (1 + €)-shortest path from s to
t that goes through a given sequence of k edges of the tri-
angulation. They show that E = O(n?) and that there are
examples where E can actually achieve this upper bound.
The numerical search can be done using a form of binary
search that exploits the local optimality condition: An op-
timal path bends according to “Snell’s Law of Refraction”
when crossing a region boundary. (The earliest reference we
have found to the use of Snell’s Law in optimal route plan-
ning applications is to the work of Warntz [23].) This leads
to a bound of S = O(k*log(nNW/e)) on the time needed
to perform a search on a k-edge sequence, where N is the
largest integer coordinate of any vertex of the triangulation.
Since one can show that k = O(n?), this yields an over-
all time bound of O(n®L), where L = log(nNW/e) can be
thought of as the bit complexity of the problem instance.

The algorithm of [17] assumes that the start (source)
point is fixed, and computes a representation of optimal
paths from the start to all other points (a form of “short-
est path map”). If the start point is moved, the algorithm
would need to be run all over again from the new start point.
In contrast, our new algorithm computes a data structure
that can be used for path queries between pairs of points.
(The query time, though, is not logarithmic, as is the case if
one builds a shortest path map and queries with a new goal
point.) Further, the algorithm of [17] has worst-case running
time that is logarithmic in 1/e, while our new algorithm is
linear in 1/¢; however, the worst-case dependence on n is
much better for the new algorithm: O(n®) versus O(n®).
Finally, in contrast with the algorithm of [17], our new al-
gorithm has been fully implemented and its practicality has
been shown.

Various special cases of the weighted region problem ad-

mit faster and simpler algorithms. For example, if the weighted

subdivision is rectilinear, and path length is measured ac-
cording to weighted L; length, then efficient algorithms for
single-source and two-point queries can be based upon search-
ing a path-preserving graph [2]. Similarly, if the region
weights are restricted to {0,1,00} (while edges may have
arbitrary (nonnegative) weights), then an O(n?) algorithm
can be based on constructing a path-preserving graph sim-
ilar to a visibility graph [6]. This also leads to an efficient
method for performing lezicographic optimization, in which
one prioritizes various types of regions according to which is
most important for path length minimization.

2 Preliminaries

We let S denote a planar polygonal subdivision having con-
vex faces. (In the event that the input subdivision has non-
convex faces, we first convexify (e.g., by triangulation).) We
will assume that S is given to us in a convenient data struc-
ture that allows the usual basic operations to be done in
constant time; e.g., the quad-edge data structure [7] is one
possibility (a variant of which is used by our code).

Let n denote the total number of vertices of S. Then S
also has O(n) faces and edges. Each face f has an associ-
ated integer weight ay € {0,1,..., W, 4+o00}. The weight of
an edge e is also an integer a. € {0,1,...,W,+oc0} and is
assumed to be at most min{ay, ap }, where f and f' are the
faces incident on e. (In the event that the input does not
specify a weight for e, we define ae = min{ay, ap}.)

A path is said to be locally optimal (an LO-path) if an
infinitesimal perturbation of it does not result in its weighted
length decreasing. The following properties of LO-paths in
weighted regions are important to our algorithm; see [17] for
proofs and further details.

1) An LO-path is piecewise-linear, with bend points onl
y
at vertices or on edges of the subdivision.

(2) If an LO-path bends at a point on an edge, while cross-
ing that edge, then it does so in a manner that obeys
Snell’s Law of Refraction: aysinf = ay sin§’ where
6 and 6’ are the angles of incidence and refraction re-
spectively, and ay and ay denote the corresponding
face weights. (The angle of incidence (refraction) is de-
fined to be the angle between the incoming (outgoing)
segment and the normal to the edge.)

(3) If an LO-path bends at a point on an edge, while en-
tering the edge at that point (turning to follow the
edge for some distance), then it enters the edge at the
critical angle of refraction, 8, = sin™' (a./ay).

(4) An LO-path cannot be incident on an edge at an angle
greater than the critical angle, ..

3 The Pathnet Algorithm

The pathnet algorithm constructs a graph, a pathnet G =
(V,E), on the vertices V of the subdivision. The basic idea
is simple: We discretize the continuum of orientations about
each vertex v € V| using k evenly-spaced directions to ap-
proximate the full range [0, 27r]. Within each of the k cones
determined at v, we determine a possible edge (a link, which
is a chain of segments, crossing edges of the subdivision)
joining v to another vertex, u, of S, or to a critical point
of entry on some edge of S. It is possible that no link is
created for a given cone; but there is at most one link per
cone.

The (possible) link is determined by tracing out a locally-
optimal path (refraction ray) from v at each of the two ori-
entations bounding the cone, advancing both paths (rays) in
lock-step across faces of S, obeying Snell’s Law of refraction
with each crossing, until the two refraction rays first en-
counter a “topological fork” the edge sequence of one ray
first starts to differ from the edge sequence of the other ray.
(Actually, for the sake of efficiency, we advance all k rays out
of v in lock step, so that each ray is traced only once, not
twice.) In other words, we determine the longest common
edge sequence prefix of the refraction rays bounding each
cone. This fork event must be of one of the following types:

(a) The two refraction rays are incident on distinct edges
of S then there is at least one splitting verter, u, on
the face f where they first fork, such that u “splits”
the two paths. We now create a link (an edge in E) be-
tween v and (any) one such vertex u. Associated with
this link is a pointer to the polygonal chain consisting
of the line segments (along either of the two rays) that
brought us to face f, and the segment joining the entry
point onto f with the vertex u. This chain represents
an approximation to a refraction path from v to u. We
store its length as the weight of the edge (v,u) € E.
Refer to Figure 3.

Figure 1: A cone determined by two refraction rays from
vertex v gets split by vertex u.

Lemma 1 There exists a unique locally-optimal path
from v to u that stays within the refraction cone that
s split by w.

Proof. The proof follows from the monotonicity lem-
mas proven in [17]. |

Remark. Optionally, we can search for a chain linking
v and u that is arbitrarily close to being a refraction
(locally optimal) path; our code does this by a sim-
ple binary search, or a coordinate descent method. In
practice, this may lead to somewhat shorter paths, and
better “looking” paths in some cases. However, we see
no way to make the worst-case error analysis take ad-
vantage of this extra optimization. We omitted it from
the subset of experiments reported in this abstract.

(b) The two rays are incident on the same edge, e, but one
or both rays are incident at an angle whose magnitude
is greater than that of the critical angle at e.

Lemma 2 There exist at most two locally-optimal paths
(corresponding to incidence angles +6. and —6.) from
v to a critical entry point on edge e that stays within
the refraction cone.

Proof. The proof follows from the monotonicity lem-
mas proven in [17]. |

We can trace a critical refraction path from a critical
entry point u € e back to v, through the cone, since

the edge sequence is known, and the critical angle at e
will therefore determine all of the angles of incidence
along the edge sequence (even though the point u is
not discovered until we trace the path forward again).
(Refer to Figure 3.) A pointer to this chain is stored
with the link (v,u) € E, and its length is recorded as
the weight of the pathnet edge. Furthermore, the crit-
ical entry point u is instantiated as a new vertex of the
pathnet (it is added to V'), and it is linked to neigh-
boring such critical points along e (or the endpoints of
e). Note that, in total, no more than O(kn) critical
entry points will ever be added to the pathnet.

Figure 2: A cone determined by two refraction rays from
vertex v gets split at edge e, due to a critical entry point
u € e.

Remark. If one ray is incident on e at an angle greater
than 6. and the other ray is incident at an angle less
than —@., then it is possible that within the refraction
cone there are two critical refraction paths incident on
e. However, if both rays are incident at angles greater
than 6. (or both < —f.), then there will be no critical
refraction path within the cone.

(¢) Both rays encounter the outer boundary of the subdi-
vision. In this case, we simply cease the tracing of the
cone, as no link of the pathnet will be made within it.

Once the pathnet is constructed, we search for a path
between two vertices simply by running Dijkstra’s shortest-
path algorithm within the pathnet. (Alternatively, we can
apply standard heuristic search variants of Dijkstra’s short-
est path algorithm, such as the A algorithm [15]; however,
our experiments reported here are all based on using Dijk-
stra’s algorithm directly, not with the A* algorithm.) For
arbitrary start/goal points, we first do point location queries
to locate them in the subdivision, and then temporarily link
them into the pathnet, by applying the same refraction ray
tracing that was done from each vertex of S, in construct-
ing G. Then, a search of the augmented pathnet yields the
desired path.

4 Analysis

The pathnet is a graph with O(kn) nodes, since each of
the k cones at each of the n vertices can produce at most
one link. The propagation of the two rays defining a cone
can be truncated after at most O(n?) steps (and typically
it does not require more than about 5-10, in practice). This

follows from Lemma 7.1 of [17], which proves that a locally
optimal path that does not go through vertices or critical
points can cross each edge at most O(n) times, implying an
edge sequence of at most O(n?) crossed edges. Thus, we get
an overall worst-case time complexity of O(kn®), to build a
data structure of size O(kn).

It now remains to prove that a shortest path in the path-
net approximates the shortest weighted path between two
points. We observe that if a large enough number of cones
is allowed for each vertex then any vertex to vertex path is
contained in a single cone and the pathnet algorithm pro-
vides exact answers to shortest path queries. This is no
longer the case when the number of cones is small.

Next, we observe that if we use k cones per vertex, then
the angle between two rays that define a cone begins at an-
gle 2m/k, and, after multiple refractions of the rays along
a common edge sequence, never gets larger than O(W/kw),
where W is the maximum finite weight and w is the min-
imum nonzero weight. (This follows from simple geometry
of Snell’s Law.)

Consider an optimal path, 7, from a vertex s to a vertex
t. We will prove the existence of a path, m, that lies in the
pathnet whose (weighted) length is at most (1+e€) times that
of #, with an appropriate choice of e (which will depend on
k). Now, 7" is partitioned into subpaths by the vertices and
critical entry points along 7*. Consider one such subpath of
", call it 7, ,, joining vertex u with vertex v. (The case of
a subpath joining two critical entry points, or a vertex and
a critical entry point, is handled similarly.)

Lemma 3 There exists a path, 7y v, from u to v, within the
pathnet, whose weighted length is at most (1 + €) times that

of Moo

Proof. Consider the cone with apex u that locally contains
the optimal subpath, = ,.

If v is the split point for this cone, then the claim is
immediate: Since the angle between the two rays at the
time of the split is O(W/kw), the ratio of the error to the
path length is O(W?/kw).

If v is not the split point for the cone, then

O

The proof uses induction on the number of subpaths in
7*. The lemma above proves the base case, in which there
is a single subpath. We now make the following induction
hypothesis: If #* has K or fewer subpaths, then there exists
a path within the pathnet that approximates 7* to within
factor (1 + ¢).

Consider now an optimal path 7", from vertex s to vertex
t, that has K + 1 subpaths. Consider the cone with apex
s that locally contains 7*. If this cone is split by a vertex
v that is the first vertex after s on 7, then we are done,
since the subpath of 7 from s to v is a link within the
pathnet, and we can appeal to the induction hypothesis and
the lemma.

Thus, assume that the first vertex after s on 7" is not
the splitting vertex v. Let P be the polygon determined by
the two refraction rays bounding the cone, stopping the rays
at the points where they exit the face f where the rays are
first split, and closing the polygon P using the boundary of
f (which contains the splitting vertex v).

The details of the analysis are somewhat tedious. We
remark that it is necessary for the analysis to assume that
there is a bounded minimum angle, 0,,;,, among the internal
angles defining a face of the subdivision, and that the ratio,

W/w, of the maximum non-infinite weight to the minimum
non-zero weight is bounded. The result is

Theorem 4 In time O(kn®) a pathnet of size O(kn) can be
constructed such that, when searched, it yields paths that are

within factor (1 + €) of optimal, where € = O(k‘:)v/f”).

Our approach is strongly motivated by results on ap-
proximating Euclidean shortest paths among obstacles (as in
Clarkson [3] and Mitchell [16]), t-spanners [9], and approxi-
mation methods devised for minimum spanning trees [24].

5 Other Algorithms

In order to determine the practicality and relative effective-
ness of our new algorithm, we implemented several other
methods, for experimental comparison.

5.1 Grid-Based Algorithm

The most basic and most popular practical approach to
solving path planning problems in varied terrain is to us
a discretization into a uniform grid, and then to search the
(weighted) grid graph for shortest paths. This method has
many advantages over other more complex algorithms: (1)
it is simple to implement; (2) it is particularly well suited
for problems in which the input data structure comes as a
grid; and (3) it is highly versatile, allowing for many other
heuristic cost criteria (e.g., charging for turns) to be added
quite easily.

We assume as input an array of sampled values of the
underlying weight function F', giving values, F; j, at regular
grid points indexed by (i,7). Since our pathnet algorithm
assumes as input a polygonal subdivision, not a weight array,
our grid algorithm initializes a weight array by sampling the
polygonal subdivision at grid points (whose spacing, v, is a
user-specified parameter).

The grid data points determine a grid graph, whose ver-
tices are the grid points and whose edges link “nearby”
grid points. Most grid-based algorithms assume a 4- or 8-
connectivity of the grid, joining point (i,j) to its four im-
mediate neighbors ((Zu] + 1)7 (27.7 - 1)1 (7' - 17j)a (Z + 17.7))7
plus possibly the diagonals.

One of the main drawbacks to a grid graph solution is
that, even for a trivial (constant) weight function F', there is
an inherent error in distance estimate, since we measure grid
distance instead of Euclidean distance. For 4-connectivity
this “digitization bias” (aliasing) results in an error factor of
V/2; for 8-connectivity, it results in a factor of (\/§+ 1)/\/5 =
1.08. See [18, 20] for discussions on the digitization bias
problem, and on different distance transforms that can be
used to address it.

One approach to reducing grid bias is to increase the
connectivity of the grid. Thus, the grid-based algorithm
that we implemented includes an enhancement to the usual
methods, in that we permit higher degrees of connectivity:
We connect (i, j) to each of the grid points (i + I,j + J),
for I,J € {-K,—-K +1,...,K —1,K}, except those that
can be reached directly (without error) by two shorter edges
(e.g., we do not connect (i,7) to (i + 2,5 + 2), since this
is effected by two diagonal connections already). Thus, for
K = 1,2,3,4, we get connectivity of 8, 16, 32, 48, respec-
tively. Allowing this K as a parameter implies that, as K
goes to infinity, and the resolution goes to zero, the grid-
based solution will in fact go to the true optimum. (The

dependence on K is O(1/K?).) This will allow a fair com-
parison with our pathnet algorithm, for which we can also
get arbitrarily close to optimum by increasing a parameter
(k, the number of cones).

Since our underlying input function F is given in polyg-
onal subdivision form, we assign weights to the edges in the
grid graph by computing the actual weighted cost of the di-
rect (straight) line segment joining the endpoints. This is
done by a simple ray tracing (walk) through S, integrating
F along the segment.

5.2 Edge Subdivision Algorithm

We also devised and implemented another natural method
for searching a weighted subdivision for paths, based on dis-
cretizing the edges of the subdivision (rather than discreting
the faces, as is the case with a grid-based method). This
method has been implemented and used by several others,
including Mitchell (who implemented it as part of a sys-
tem built at Hughes, for the DARPA ALV project in 1985),
Johansson [8] (who implemented it for use in fluid flow com-
putations for injection molding), and Lanthier, Maheshwari,
and Sack [12] (who, in indpendent work closely related work
our own, have conducted experiments on this, and related,
practical methods for the WRP).

The basic edge subdivision algorithm is as follows. For
each edge e of the subdivision, we place |a./d | new (Steiner)
nodes, evenly spaced along e. Here, § is a parameter of the
algorithm, and a. denotes the weight of edges e. We con-
struct (weighted) edges joining each such Steiner node with
all other nodes (both original vertices and Steiner nodes)
that appear on the boundary of each of the two faces inci-
dent on e. In this way, each face of the subdivision corre-
sponds to a complete graph on the set of vertices and Steiner
nodes that appear on its boundary. Since faces are assumed
to be convex, the line segment joining any pair, » and v, of
boundary points lies entirely within the face, so we assign
the weight of (u,v) to be |uv| - @, where a is the weight of
the face. (Note that the shortest path joining u and v need
not be the single edge, (u,v), especially if the weight a of
the face is very high.)

The edge subdivision algorithm has the following design
choices: (1) the parameter § (or one can specify a maximum
number of Steiner points on any one edge); and (2) how
to space the points on an edge, e.g., evenly (as we do), in
geometric progression (as Papadimitriou [19] does for short-
est paths in ®%), or in some other way. We have not yet
seen how to use uneven spacing to achieve provably bet-
ter approximation bounds; this may be a subject of future
experimental analysis.

5.3 Other Approaches

Our WRP-Solve system also has a couple of other heuristic
algorithms implemented:

(1) Search the (weighted) edge graph of S for a shortest
path between two vertices. (If the start/goal are not
vertices of S, then we simply augment the graph by
connecting them to the vertices of the convex contain-
ing cell.) This method has the advantage of being very
simple and fast, but of course it can produce paths that
are arbitrarily bad with respect to optimal.

(2) Search the dual graph of S, using edge weights that
are the average of the two adjacent face weights, times
the distance between the centroids of the faces. Again,

this method is fast, but can yield arbitrarily bad paths

with respect to optimum. (Note that if the faces are

all unit squares — i.e.;, S is a regular grid — then we

are simply doing a 4-connectivity grid graph method,

z\;m;_d the approximation error factor is then bounded by
2,

Other approaches being currently designed for the WRP-
Solve system include a simulated annealing approach (using,
e.g., a starting seed path determined by either of the fast
heuristics (1) or (2) above, together with a post-processing
local optimality stage), and more sophisticated grid-based
or quadtree-based algorithms. It will also be interesting to
implement and test hybrid methods of computing optimal
paths; using the best aspects of pathnets, grid graphs, edge
subdivisions, etc.

6 Implementation and Experimental Setup

The WRP-Solve system is implemented in C++. Experi-
ments were run on a set of SGI Indigos with R5000 proces-
sors at 150MHz running TRIX6.2. Internal memory size was
64MB for all, 512KB level 2 and 32KB separate data and
instruction level 1 caches. Times quoted in the experiments
were measured only on the SGI. For memory intensive exper-
iments we used an Intel Pentium Pro computer at 180MHz
with 128MB of memory.

6.1 Design choices

All of the algorithms model weighted subdivisions and grid
sampled data with an undirected network where the nodes of
the network correspond to points in the plane and the edge
weights represent the weighted distance between nodes. The
nodes are associated to a feature of the subdivision — vertex,
edge, face or to a Steiner point added by sampling an edge
or a face of the subdivision.

Network representation is dependent on the search algo-
rithm. For example, the edge subdivision algorithm does
not require an explicit representation of the links between
nodes on the same face. Determining the neighbors of a
node during the search algorithm and the weighted length
of the links can be done while the search algorithm is exe-
cuted. This network representation would require no more
storage than storage for the nodes but it would be inefficient
in terms of execution time because dynamically determining
the neighbors of a node has an impact on performance. On
the other hand, building a complete representation nodes
and adjacency lists — for a large sampled grid is not practical
given the large number of nodes and links.

The requirements that each algorithm imposes upon the
representation of the search network had to be balanced with
the fact that the experimental setup must compare the per-
formance of algorithms. The choice was made to use the the
same data structures for all algorithms.

The advantage of this solution is that the code used to
implement the search algorithm for all the approximation
algorithms is the same. This means that the number of ele-
mentary operations to compute a shortest path can be used
to compare the performace of the algorithms. On the other
hand, a specialized implementation for any one of the search
methods would result in better performance in terms of
space and time used.

6.2 Datasets

The Weighted Regions Problem has practical applications in
multiple domains, including decision support systems for the
military [13, 14], manufacturing [8] and Geographic Informa-
tion Systems. In practice, datasets weighted subdivisions
— have up to 10000 vertices. Most applications use smaller
subdivisions for example in the manufacturing application
the size of the dataset is less than a 1000 vertices.

The experiments were run with a mix of real terrain
and artificially generated datasets. The drawback of us-
ing real datasets is the presence of features that are degen-
erate or topologically inconsistent. In the implementation
these problems are accounted for by letting the algorithms
abandon computing a link — locally optimal path — if the
underlying data structure is inconsistent.

Real World Datasets. The subdivisions used for the ex-
periments are extracted from the “microterrain” elements

present in the Hunter-Ligett Compact Terrain Database (CTDB).

The terrain database is used in the ModSAF[13, 14] train-
ing simulator for visibility and shortest path computation.
The weighted subdivision corresponding to microterrain el-
ements is obtained by assigning weights to the faces of the
subdivision using a heuristic that assigns to each face inte-
ger weights between 3 and 12. The number of different
weights used is higher than that which is typically used in
practice by ModSAF; it was chosen to make shortest path
planning even more challenging for our experiments.

The sizes of the weighted subdivisions vary from less than
100 vertices to around 1000 vertices. The faces of the sub-
division are mostly triangles, although buildings and other
man-made features have more vertices. The complicating
problem with this data is the relatively large number of
topologically incorrect features (e.g. overlaping faces and
dangling edges).

Simulated Datasets. Artificial datasets are generated us-
ing two methods:

1. One method starts with a regular rectilinear grid and
randomly perturbs the positions of the vertices, while
constraining the perturbation so that all faces of the
subdivision remain convex.

2. A second method uses Delaunay triangulations of point
sets (based on the algorithm and code of Devillers [4]).
In one set of datasets the vertices of the subdivision are
generated uniformly at random within a square. An-
other set of triangulations is designed to yield nonuni-
form point distributions, by concentrating a majority
of the points in a few small disks; the goal is to simu-
late the irregular distribution of points encountered in
applications.

Each of the artificial datasets is generated with a vari-
able number n of vertices, where n = 100, 200, 500, 1000,
2000, 5000, 10000 and 20000. Larger subdivisions are possi-
ble, but these datasets incur run-time penalties for some
of the algorithms we compare, these subdivisions lead to
data structures that exceed the amount of internal mem-
ory available. It is an open question how the shortest path
algorithms fare experimentally in external memory settings.

6.3 Generation of Start/Goal Pairs

The WRP-Solve system allows start and goal points to be
chosen arbitrarily. A simple (worst-case linear-time) algo-

rithm is used for point location, with special code to handle
start/goal points that fall on edges/vertices of the subdivi-
sion.

Start/goal point pairs are picked at random with a min-
imum Euclidean distance between start and goal of 20% of
the diameter of the dataset.

Start and goal points act as special vertices of the search
network. These vertices are inserted when the search be-
gins and deleted when the search ends. Time measurements
include the time to insert the special vertices because this
time (exclusive of point location) is partially dependent on
the search algorithm. For example, inserting a vertex into
a pathnet takes more time than the time to insert a vertex
in a grid. In contrast, deleting vertices is a standard oper-
ation that involves the same operations for all algorithms
implemented.

6.4 Data structures

The choice of representation for the subdivision and network
data structures influences directly the performance of the
algorithms. This effect is lessened by measuring the time
performance for the each algorithms measured on the CPU
clock and by counting the number of elementary operations
performed by each algorithm during a shortest path search.

Subdivision. The natural choice for representing the input

subdivisions is the quad-edge [7] data structure. Because of
the limited operations needed, and the fact that the datasets
are terrains, the implementation is simplified: Rot (edge-
dual) and Flip (orientation) are not implemented.

Faces and vertices of the planar subdivision are objects
with attributes. The vertices have (z,y)-coordinates and
faces have weights. In all experiments the edges have the
default weight which is the minimum weight of the incident
faces.

It is possible to define obstacles in the subdivision when
the weight of a face is over a user-defined threshold. In this
case, no shortest path is allowed to cross an obstacle face.
Free (no cost) regions are implemented by using low unit
weight faces. Most applications use only a small number of
weights. For example, in applications of WRP-Solve to
air traffic control, Seagull Technologies, Inc. uses heuristics
to assign five different weights to regions. The experiments
use {1,...,15} for weight values.

Search Network. The search network is a data structure
designed to answer efficiently membership queries like “Is
there a node at vertex v of the planar subdivision?” Hash
tables are used to store the nodes because they are efficient,
simple and a robust implementation is available from the
Tcl library. The average size of the buckets used in the hash
tables was always less than two.

To speed things up separate hash tables are maintained
for each of the objects making up a weighted subdivision:
vertices, edges and faces.

6.5 Robustness issues

The pathnet algorithm assumes a topologically correct and
consistent weighted subdivision. Subdivisions can be input
interactively with click and drag. After an input operation,
WRP-solve performs a topological check to verify consis-
tency before a new edge is added to the data structure.
The procedure that solves Snell’s Law of Refraction for
each crossing is particularly sensitive to numerical errors.

An exact solution requires solving a 4*" degree polynomial.
If the refraction path is sufficiently close to a subdivision
vertex and an incorrect decision is made — because of floating
point rounding the program will go into an infinite loop.
To address this issue, each refraction case subproblem is
solved with the following constraint: if the crossing point is
within a small distance — a constant fraction of edge length,
divided by the number of cones of an endpoint, then the
path “snaps” to the edge endpoint.

7 Results

Measured parameters We measured the following param-
eters for all shortest path queries:

e The number of operations performed during each short-
est path search; here, “operations” counts the number
of nodes visited by the search algorithm and the num-
ber of insertion and update operations to the heap.

e The time spent during each search. We measured two
times: (1) the elapsed time which measures the in-
terval of time elapsed between the start of the search
and the end of the search - as returned by the func-
tion gettimeofday and (2) the user and system times as
measured by getrusage. The reason was that the ex-
periments were run on hardware in use by other users
and the elapsed time might prove an incorrect mea-
sure. On the SGI/IRIX architecture used during the
experiments, getrusage returns its measurement up to
a resolution of microseconds. On Linux, getrusage re-
turns times with a resolution of 10 miliseconds. Thus,
all time measurements have been performed only on
the SGI architecture.

e The length of the shortest path approximation and the
actual Euclidean length between the start and goal
parameters.

e The number of nodes in the network.

In addition to the above values, which were measured for all
methods, we also measured for the pathnet algorithm some
additional parameters, including the number of critical entry
points, the number of simple and the number of chain links,
the average degree of the nodes of the search network, and
the average number of edge crossings in a chain.

Average query time vs. approximation factor The path-

net achieves consistently approximation factors of less than
5 percent, for all choices of parameters that we tested, and
for all datasets. Figure 3 presents a plot of the average time
required to process a query versus the approximation factor.
The edge subdivision algorithm achieves the same approx-
imation factors using more processing time. The dataset
being used for the experiment is a Delaunay triangulation
with 1000 vertices. The grid used in the experiment is 8-
connected. Results show that the contenders for accurate
results are the edge and the pathnet algorithms. The ap-
proximation factor obtained with the grid algorithm shows
the digitization bias, although by using a higher degree of
grid connectivity results for the grid algorithm should im-
prove.

Preprocessing time and memory use for pathnet algorithm
Preprocessing times required to build pathnets for different
parameter values are measured. Results show that building

the search network takes time proportional to the number
of cones. Build times depend on the number of nodes in
the search network, see Figure 5. Triangulations — terrain
and Delaunay data sets have larger size pathnets than grid
subdivisions.

The pathnet algorithm achieves good approximation re-
sults for shortest paths even when the number of cones used
is relatively small less than 20. The data shows that the
time to preprocess a subdivision with 1,000 nodes is less than
10 seconds. Note that in practical use the pathnet is built
on demand and the preprocessing penatly is correspondingly
lower. For the same subdivision the edge algorithm is on
average 2.5 times slower for the same approximation factor.
The grid — 8-connected — for a weaker approximation factor
uses 10 times more.

The amount of memory used by the pathnet algorithm is
proportional to the number of cones, see Figure 4. Artificial
datasets have less variation than terrain data.

Number of operations The edge and pathnet algorithms
perform fewer operations than the grid algorithm to achieve
the same approximation factor. The pathnet has the ad-
vantage of links spanning across multiple faces. Figure 6
presents the average number of nodes visited per unit dis-
tance for different approximation factors. Scaling to unit
distance allows an estimate of the time required to complete
a shortest path query — a useful feature in an application
where time resources are limited.

Complementary to the average number of operations is
the average time required to plan a shortest path for a unit
distance, see Figure 7.

Approximation factors for pathnets The experiment looks
at the correlation between approximation factors and the
number of cones used to build a pathnet. Figure 8 links the
parameter — number of cones — necessary to achieve a given
approximation factor, with respect to the optimal path.

The z-axis represents the number of vertices. For artifi-
cial datasets the number of cones remains relatively constant
and decreases as the number of vertices increases.

For a given approximation factor the number of cones
is the smallest number such that all shortest path queries
tested are within the approximation factor. For example, a
pathnet with 15 cones will in most cases achieve an approx-
imation factor of 2 percent. A pathnet built with 20 cones
achieves on average a 1 percent approximation factor.

The peaks in the plot indicate that some data sets require
a large number of cones for a good approximation factor.
A useful observation is that the ”"behavior” of the dataset
remains the same over several values of the parameter. In
this case, the approximation factor achieved with a small
number of cones is a predictor on the approximation factor
once the number of cones increases.

8 Conclusion

In this paper, we have taken a new, practical look at the
problem of computing low-cost paths in weighted terrains.
Our main contribution is a new method to compute paths in
weighted terrains. The method has been fully implemented
and tested in planar weighted regions, and comparisons have
been made with several other simple and natural heuristic
algorithms, such as regular grids and edge subdivision. Our
experiments show that the pathnet method performs very
well in practice and is highly competitive with other meth-
ods, generally yielding a shorter path in less query time.

One other advantage of the pathnet algorithm is that its
form of discretization is independent of the scale of the data
set. The grid and the edge subdivision algorithms depend
in their choice of parameters on the (Euclidean) sizes of the
features (edges and faces) in the map.

While the worst-case dependence on ¢ is worse than that
of Mitchell and Papadimitriou [17], the worst-case depen-
dence on n is substantially lower, both in terms of time and
space complexity: O(n®) versus O(n®) time and O(n) versus
O(n*) space.

Several extensions to our work are natural:

1. Our method applies directly to polyhedral surfaces
with weighted facets. The only change to the imple-
mentation necessary is to modify the ray tracing proce-
dure to compute the refraction path in the “unfolded”
version of the local geometry. This code exists already,
and will soon be fully tested.

2. The same method also applies to cases of weight func-
tions that are not necessarily constant within faces of
the subdivision (or facets of the polyhedron). For ex-
ample, we could consider piecewise-linear weight func-
tions, or other simple-to-describe weight functions for
which we can compute the local optimality condition
when a path crosses a region boundary. We also plan
to consider weight functions that vary with time.

3. At the other extreme, we can apply our method to the
unweighted (constant weight) case too, obtaining an
approximation for shortest paths on polyhedral sur-
faces. For this problem, we know that a locally op-
timal path can cross only a linear number of edges
(since each edge can be crossed at most once), so the
complexity becomes O(kn?). Further, the actual per-
formance in practice may be close to linear, since the
average running time is O(knm), where m is the av-
erage number of edges crossed by a cone before its
defining rays get split; in practice, we expect m to be
much less than n.

In conclusion, we should add that there are many other
interesting experiments still to be conducted. In particular,
we plan to conduct direct comparisons between the meth-
ods presented here and the methods recently developed in a
parallel effort by Lanthier, Maheshwari, and Sack [12]. Fur-
ther, it would be interesting to compare our methods’ perfor-
mance to the simulated annealing approaches implemented
by Kindl, Shing, and Rowe [10, 11]. By combining different
heuristic methods, we expect that the ultimate winner in
our quest for better heuristics will be a “hybrid” method,
which can take advantage of data given both in terms of
regular grids and in terms of polygonal subdivisions.

References

[1] R. Alexander and N. Rowe. Path planning by optimal-path-
map construction for homogeneous-cost two-dimensional re-
gions. In Proc. IEEE Internat. Conf. Robot. Autom., 1990.

[2] D. Z. Chen, K. S. Klenk, and H-Y. T. Tu. Shortest path
queries among weighted obstacles in the rectilinear plane.
In Proc. 11th Annu. ACM Sympos. Comput. Geom., pages
370-379, 1995.

[3] K. L. Clarkson. Approximation algorithms for shortest path
motion planning. In Proc. 19th Annu. ACM Sympos. Theory
Comput., pages 56 65, 1987.

[4] O. Devillers. Robust and efficient implementation of the
Delaunay tree. Report 1619, INRIA Sophia-Antipolis, Val-
bonne, France, 1992.

[5] D. H. Douglas. Least cost path in geographic information
systems. Research note No. 61, Department of Geography,
University of Ottawa, Ottawa, Ontario, August 1993.

[6] L. Gewali, A. Meng, J. S. B. Mitchell, and S. Ntafos.
Path planning in 0/1/0c0 weighted regions with applications.
ORSA J. Comput., 2(3):253-272, Summer 1990.

[7] L. J. Guibas and J. Stolfi. Primitives for the manipulation
of general subdivisions and the computation of Voronoi dia-
grams. ACM Trans. Graph., 4:74-123, 1985.

[8] P. Johansson. On a weighted distance model for injec-
tion moulding. Link6ping Studies in Science and Technol-
ogy, Thesis No. 604 LiU-TEK-LIC-1997:05, Division of Ap-
plied Mathematics, Linképing University, Linkdping, Swe-
den, February 1997.

[9] J. M. Keil and C. A. Gutwin. Classes of graphs which ap-
proximate the complete Euclidean graph. Discrete Comput.
Geom., T7:13-28, 1992.

[10] M. Kindl, M. Shing, and N. Rowe. A stochastic approach
to the weighted-region problem, I: The design of the path
annealing algorithm. Technical report, Computer Science,
U.S. Naval Postgraduate School, Monterey, CA, 1991.

[11] M. Kindl, M. Shing, and N. Rowe. A stochastic approach to
the weighted-region problem, II: Performance enhancement
techniques and experimental results. Technical report, Com-
puter Science, U.S. Naval Postgraduate School, Monterey,
CA, 1991.

[12] M. Lanthier, A. Maheshwari, and J. Sack. Approximating
weighted shortest paths on polyhedral surfaces. In Proc.
13th Annu. ACM Sympos. Comput. Geom., page To appear,
1997.

[13] M. J. Longtin. Cover and concealment in ModSAF. In Proc.
Fourth Conference on Computer Generated Forces and Be-
havioral Representation, pages 239 247. STRICOM-DMSO,
1994.

[14] M. J. Longtin and D. Megherbi. Concealed routes in
ModSAF. In Proc. Fifth Conference on Computer Gener-
ated Forces and Behavioral Representation, pages 305-313.
STRICOM-DMSO, 1995.

[15] J. S. B. Mitchell. An algorithmic approach to some prob-
lems in terrain navigation. In S. Sitharama Iyengar and Al-
berto Elfes, editors, Autonomous Mobile Robots: Perception,
Mapping, and Navigation, pages 408-427. IEEE Computer
Society Press, Los Alamitos, CA, 1991.

[16] J. S. B. Mitchell. L1 shortest paths among polygonal obsta-
cles in the plane. Algorithmica, 8:55—88, 1992.

[17] J. S. B. Mitchell and C. H. Papadimitriou. The weighted
region problem: Finding shortest paths through a weighted
planar subdivision. J. ACM, 38:18-73, 1991.

[18] J. S. B. Mitchell, D. W. Payton, and D. M. Keirsey. Planning
and reasoning for autonomous vehicle control. Internat. J.
Intell. Syst., 11:129-198, 1987.

[19] C. H. Papadimitriou. An algorithm for shortest-path mo-
tion in three dimensions. Inform. Process. Lett., 20:259-263,
1985.

[20] I. Ragnemalm. The Euclidean distance transform. Linkoping
Studies in Science and Technology, Ph.D. Dissertation 304,
Department of Electrical Engineering, Linképing University,
Sweden, 1993.

[21] R. F. Richbourg, N. C. Rowe, M. J. Zyda, and R. McGhee.
Solving global two-dimensional routing problems using
Snell’s law. In Proc. IEEE Internat. Conf. Robot. Autom.,
pages 1631-1636, Raleigh, NC, 1987.

[22] N. C. Rowe and R. F. Richbourg. An efficient Snell’s
law method for optimal-path planning across multiple two-
dimensional, irregular, homogeneous-cost regions. Internat.
J. Robot. Res., 9:48 66, 1990.

[23] W. Warntz. Transportation, social physics, and the law of
refraction. The Professional Geographer, 9(4):2 7, 1957.

[24] A. C. Yao. On constructing minimum spanning trees in k-
dimensional spaces and related problems. STAM J. Comput.,
11:721 736, 1982.

15 : :

145

14

135

13

12

Approximation factor
=
N
(9]
T

115

11

Edge subdivision
Grid (8-connectivity)

T T
Pathnet —

1
5000

Time/query (microseconds)

Figure 3: Approximation factor for the pathnet, grid and
edge subdivision algorithms with respect to shortest path

query time

90000 T T

10000 15000 20000 25000 30000 35000 40000 45000 50000

70000 -

60000 -

50000 |~

30000 |-

Number of nodesin pathnet

I
0 2000 4000 6000

Size of subdivision (vertices)

Figure 4: Number of nodes in pathnets with respect to the

size of the weighted subdivision

8000 10000 12000 14000 16000 18000 20000

Preprocessing time (miliseconds)

T T

4 Cones —
6 Cones
8 Cones -
12 Cones -

16 Cones _-
20 Cones
_.~~24 Cones -
36 Cones -
50 Cones -
100 Cones ——
200 Cones ----

Data set size (in vertices)

Figure 5: Time required to build a pathnet search

8000 10000 12000 14000 16000 18000

20000

graph

versus number of cones for each vertex of the weighted sub-

division

6 T T T T T T
Pathnet —
Edge subdivision --
s Grid (8-connected) -----
8 4 R
8 |
% I
s x
: 3 .
5 |
® i
g |
o 2 b
\
1l 4
0 n 1 1 . T TP TR
1 11 12 . . 15 16 17
Approximation factor
Figure 6: Number of nodes visited with respect to the ap-
proximation factor
512 T T T T T T T
i » deathnet —
L. Edge subdivision --
256 \\\ Grid -----
128 -} b
oy 4
2 64 4
B
E RF —
5 \
s 4
i
k=)
T
e 4
£
1 1 1 1 1 1 1 1
1 1.05 11 115 12 1.25 13 135 14

Approximation factor

Figure 7: Average search time versus approximation factor,

normalized to unit euclidean distance.

Approximation factor vs. number of cones

25 -

Number of cones

20 |-

10

0 200 400 600 800 1000 1200 1400

Subdivision size (number of vertices)

1600

1800

2000

Figure 8: Maximum approximation factors for the pathnet

algorithm versus number of cones.

