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Abstract. The weighted region problem (WRP) is to find an optimal
path from s to t, where s and t are the vertices of a planar graph and path
is allowed to go through the faces. Finding optimal paths is an impor-
tant problem in robotics, computational geometry, etc. Exact solutions
for WRP are known in some special cases. However, the computational
complexity of WRP is unknown. We present the exact solutions of sim-
ple weighted region problem in presence of strips, triangles, and convex
polygons.
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1 Introduction

The Weighted region problem (WRP) is stated as follows: The input is a plane
subdivided into polygonal regions. Each polygon is associated with a nonnegative
weight α with a possibility of assigning different weights to the boundaries of the
polygon. The weight α denotes the “cost per unit distance” of traveling in its
associated region. The objective is to find an optimal path (least cost path) from
a given point s to a given point t according to the weighted Euclidean metric.

A special case of WRP in which the weights are taken from the set {0, 1,
∞} is addressed in [4]. It is solved exactly by constructing a graph known as
a critical graph, which is an extension of the standard visibility graph. [4] also
concludes with an open question about the complexity of the latter problem if
the weights are taken from the set {1, 2}.

In this paper, we present exact solutions to certain specific WRPs. We also
discuss the complexity of the general case. Without loss of generality, we assume
the following throughout this chapter:

1. All regions are convex (easily achieved by triangulating the given subdivi-
sions).

2. Unless stated otherwise, s and t are the vertices of the input.
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3. Unless stated otherwise, the weight of the background (outside of the regions)
is assumed to be one. The weight of all polygons is greater than or equal to
one.

4. Unless stated otherwise, the weight of an edge is the minimum of the weights
of its adjacent regions. Notice that it is imperative to postulate that the
weight of an edge is less than or equal to the minimum cost of its adjacent
regions. Without this assumption, an optimal path does not have to exist
since it might be possible to construct a series of consecutively cheaper paths
converging to an edge from the side of a cheaper polygon.

2 Preliminaries

For any region ri, we use αi to denote the weight of ri. For a boundary edge e,
the unit weight is defined to be min{α1, α2}, where r1 and r2 are the two regions
incident to e. The edge e shared by regions r1 and r2 is denoted by e = ∩(r1, r2).
We use int(x) to denote the relative interior of an edge or a region.

It has been proved in [3] that an optimal path in a WRP is piecewise linear
and simple (non-intersecting), consisting of O(n2) segments, where n is the num-
ber of regions in the input. We can specify the piecewise linear paths by listing
the sequence of points that represent the end points of the linear subpaths. The
weighted length ||xy|| of a line segment joining two consecutive points x and y
is equal to α · |xy|, where |xy| is the Euclidean distance from x to y, and α is
either the weight of an edge e if xy lies on e or the weight of a region intersecting
xy. The weighted length of a path is then the sum of the weighted lengths of its
subpaths. An optimal path between two points s and t is a path that has the
least cost among all the paths from s to t.

While attempting to solve WRP, many authors note and take advantage of
the analogy between WRP and the propagation of light. Fermat’s principle in
optics [1] states that light always travels from one point to another along the
quickest (cheapest) route. However, it is paramount to realize that the optimality
of the route asserted by Fermat’s principle is valid only among all routes “that
the light can actually take”. But there are instances of WRP where Fermat’s
principle applies. Most notably the situation of Figure 1, where the optimal
solution follows from Snell’s law of refraction of light.

Consider an optimal path from s in a region (medium) with weight α1, to a
point t in a region with weight α2. Let e be the edge shared by regions r1 and
r2. This case is shown in Figure 1. If α1 = α2, then the shortest route is simply
st. Otherwise, the optimal path consists of sx and xt, where x is a point on e
between s and t.

The cost function, F , can be expressed as a differentiable function of x whose
domain is [0, d], and we want to find the absolute minimum value of F on this
closed interval. Clearly,

F (x) = α1

√

x2 + y2
s + α2

√

(xt − x)2 + y2
t .
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Fig. 1. Optimal path from s to t

We find the optimal value for x by setting F ′(x) = 0. Then

F ′(x) = α1
x

√

x2 + y2
s

− α2
xt − x

√

(xt − x)2 + y2
t

. (1)

Thus F ′(x) = 0 if and only if

α1 sin θ1 = α2 sin θ2 (2)

where θ1 and θ2 are as shown in Figure 1.
We can see from (1) that F ′(0) < 0 at x = 0 and F ′(d) > 0. Since F ′

is a convex function on [0, d], there exists a unique point x ∈ [0, d] such that
F ′(x) = 0. Formula (2) is Snell’s Law or the Law of Refraction.

(2) gives the optimal angle of incidence of the path from s to t. If we set yt = 0
(moving t on e), and α2 < α1, either the optimal path is the line segment st, or
it must travel along e. In the latter case, θ2 = π/2, therefore, θ1 = sin−1(α2/α1)
is called the critical angle defined by e. The critical angle θc is defined as follows:
when an optimal path goes from a region r1 to a less expensive region r2 then
θc = sin−1(α1/α2).

Solving for x in (1), we obtain a 4th degree polynomial. Here we scale weights
by setting α2 = 1, α = α1/α2, and (1 − α2) = β we get

βx4 + 2xtβx3 + (βx2
t − α2y2

t + y2
s)x2 + 2xty

2
sx − x2

t y
2
s = 0 (3)

Claim. An optimal path is never incident upon an edge at an angle greater than
the critical angle.

A path p is said to pass through an edge e = ∩(r1, r2) at point y, if there exists
a point x ∈ r1 and x′ ∈ r2 such that xy ∈ int(r1) ⊂ p and yx′ ∈ int(r2) ⊂ p.
If a path p contains a subpath uv ⊂ e, then p is called an edge shared path and
edge e is called a shared edge.

Lemmas 1, 2, and 3 are proved in [3] (Lemmas 3.3, 3.6, and 3.7). We state
these Lemmas for the convenience of the reader.

Lemma 1. Let e = ∩(r1r2) be an edge and αe = min{α1, α2}. An optimal
path p passing through the interior of the edge e is incident on e at an angle
less than the critical angle θc defined by e. If p contains the subpath uv, where
u, v ∈ int(e), then the angle of incidence at points u and v must be the critical
angle θc.
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Fig. 2. Optimal path from s to t

Lemma 2. An optimal path p passing through the edges (e1, e2, . . . , ek) from
point s to a point t with ei 6= ei+1 is the unique optimal path, and it obeys
Snell’s law at each crossing point of each edge.

Lemma 3. Let p be an optimal path. Then either (1) between any two consec-
utive vertices of p, there is at most one critical point of entry to an edge e, and
at most one critical point of exit from an edge e′ (possibly equal to e); or (2) p
can be modified in such a way that (1) holds without altering the length of the
path.

3 Paths through strips

We call an unbounded region between two parallel lines et and eb a strip, as
shown in Figure 2. Without loss of generality, we let et and eb be the top and
bottom border of the strip, respectively, and we assume that et, eb are horizontal.

This section presents a solution for a WRP consisting of strips of equal weight.
First, consider the optimal path from point s to t through a single strip S. Let
the weight of the strip be α = 1+ǫ, 0 ≤ ǫ < ∞. Clearly, if ǫ = 0, then the optimal
path is st. There are three cases to consider: (1) s ∈ S, t /∈ S, (2) s, t ∈ S, (3)
s, t /∈ S.

Case (1) (s ∈ S, t /∈ S) can be solved using (3).
Case (2) (s, t ∈ S) The optimal path is either (a) st, or (b) consists of three

segments (su, uv, vt), where u and v are points on eb or et. This is shown in
Figure 2. By Lemma 1, su and vt are incident at the critical angle. Therefore,
both (a) and (b) can be computed in time O(1). NOTE : The optimal path in
case (b) need not be unique. Anytime s, t are placed symmetrically with respect
to the line (eb + et)/2, we have two solutions.

Consider the case where s and t are on different edges, and the critical angle
is θc, furthermore, angle of incidence of st is greater than θc. Then, by Claim
2 an optimal path must cross S at a critical angle and share an edge. Crossing
S can occur at infinitely many points between s and t, thus there are infinitely
many paths in such case.

Case (3) (s, t /∈ S) If st∩S = ∅, then st is optimal. Without loss of generality,
assume s is below eb and t is above et as shown in Figure 3(a). Claim 3 shows
that this case is equivalent to Case(1) and we are done.
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Fig. 3. s, t /∈ S can be solved by Snell’s Law by shifting S

Claim. Consider the two cases:

a) Assume s, t /∈ S and st ∩ S 6= ∅ as shown in Figure 3(a).
b) Slide S from case (a) such that s ∈ eb as shown in Figure 3(b).

The angle of incidence θ1 on et in both cases must be equal.

Proof. The optimal solution to case (a) consists of three segments (sx, xx′, x′t).
By Lemma 2, we have

sin θ1 = α sin θ2,
sin θ3 = α sin θ2,

∴ θ1 = θ3, since 0 ≤ θi ≤ π. (4)

θ1, θ2, and θ3 are the angles of incidence at points x, x′, and t respectively.
Therefore, we can rearrange segments to obtain a solution to case (b). Clearly,
this processes can be reversed, i.e., a solution for case (b) can be split to obtain
a solution to case (a). Therefore, both cases are equivalent.

3.1 Multiple strips of different weights

Consider the case of a WRP having more than one strip each having some weight,
not necessarily the same. Let Si, ti, αi denote the strip, thickness, and weight
of the ith strip, respectively. Let θ′i, θi be the angle of incidence of the optimal
path inside the ith strip and the angle in the background preceding the ith strip,
respectively. This case is shown in Figure 4(a). Again, by Lemma 2, we have

sin θ1 = α1 sin θ′1,

sin θ2 = α1 sin θ′1,

}

implies θ1 = θ2

...

Since 0 ≤ θi ≤ π, we have

θ1 = θ2 = . . . = θk+1. (5)
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θ1

α2 > 1

θ0

x1

s

s1

d

.

.

.

α1 > 1

αk > 1

t1

s2

t2

tk

sk+1

θ2

θκ

θ0

θ0 x2

xκ

θ1

t(xt, yt)

(a)

t2 α2 > 1

α1 > 1t1

αk > 1tk

s

t = t1 + t2 ... + tk

d

θ0

θ1

s = s1 + s2 ... +  sk+1

θ2

θκ

t(xt, yt)

(b)

Fig. 4. Multiple strips of varying weights can be grouped
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Fig. 5. Three strips of different weights

Whenever αi = αj , we get θi = θj . The total weighted length of the optimal
path intersecting the regions of equal weights must remain the same regardless
of the order in which these strips appear. Henceforth, the complexity of solving
the multiple strips case is same regardless of the order in which the strips appear
in the input.

Path through three strips In order to answer the question about the com-
plexity of the general WRP, one can employ the following idea: If there are
instances of WRP whose exact solutions hinge on solving a (general) polynomial
of degree 5 or more, then WRP is not solvable by radicals (see [2]). As we have
seen, Snell’s law depends on solving a polynomial of degree 4. To obtain a poly-
nomial of degree higher than four, one must consider a more complicated setting
than WRP consisting of strips of equal weight.

Therefore, consider a case of a WRP with three strips having different weights,
α1, α2, and α3 as shown in Figure 5. We can use Snell’s law in order to write
the equation for an exact solution to this case.

α1 sin θ1 = α2 sin θ2 = α3 sin θ3

This gives us the 12th degree polynomial. Unfortunately, we were unable to pro-
duce a WRP configuration that yields a polynomial about which we can demon-
strate that it is not solvable by radicals, but the above calculation indicates
strongly that such a polynomial exists.
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Fig. 6. Optimal path from s to t

4 Paths through a triangle

In this section, we consider a solution to a WRP consisting of a triangle. Through-
out this section, △ABC denotes a triangle ABC having edges AB = E1,
AC = E2, BC = E3, ∠BAC = θ and ∠ABC = θ1 and α > 1 is the weight
of the inside of the triangle. Let s ∈ E1 and t ∈ E2. If we draw a line HH ′

parallel to AC that passes through s, then the case can be viewed as a special
case of a single strip when an optimal path cuts through the face. This case is
shown in Figure 6(a).

Observation 1 An optimal path p from s ∈ E1 to t ∈ E2 in a triangle with
edges E1, E2, E3 (1) does not bend twice as shown in Figure 6(b), i.e., path
cannot be incident upon the edge at some point P ∈ E1 and A 6= s and at some
point Q ∈ E2 and A 6= t, or (2) p can be modified such that (1) holds without
affecting its cost.

Proof. Proof follows from similar triangles APQ and AsQ′. Complete proof will
be provided in full version of the paper.

Observation 2 (Always Cut) If there exists two points x ∈ E1 and y ∈ E2

such that xy is an optimal path, then for every two points u ∈ E1 and v ∈ E2,
we can find an optimal path that does not go through the vertex A unless u = A
or v = A.

Proof. If uv is parallel to xy, by similarity of the triangles △uAv and △xAy, we
have uv which is optimal. Now consider a segment parallel to xy passing through
v incident on E1 at u′. Without loss of generality, let u′ be closer to A. Take the
optimal path to be uu′, u′v

Theorem 1 (Critical Weight). An optimal path p from s ∈ E1 to t ∈ E2 cuts
through the face of the triangle if and only if α ≤ 1

sin(θ/2) .
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Fig. 7. Optimal path from s to t in a convex polygon

Proof. We want to find α such that the optimal path for some points s ∈ E1 to
t ∈ E2 is such that:

α · |st| > |sA| + |At| (6)

Find the minimum value of α, by varying |At|, we get |sA| = |At|.

α >

√

2

1 − cos θ
=

1

sin(θ/2)
. (7)

If e1 and e2 are the boundary edges of a region r, a path never passes through
r if the weight of r is αr > 1

sin(θ/2) , where θ is the angle extended by e1 and

e2. We refer to the maximum of such weight as a critical weight defined by the
angle extended by e1 and e2.

5 Convex polygon

In this section, we present a solution to WRP consisting of a convex polygon C.
Our results provide a solution except in the case when s and t are outside of C
and the optimal path consists of three line segments sx, xx′, and x′t, where x
and x′ are points on some edges of C.

Let Ec and Vc denote the set of vertices and edges of C, respectively and
|Ec| = |Vc| = n. Let α be the weight assigned to the inside of C, α = 1 + ǫ, 0 ≤
ǫ < ∞. The weight of the background (unbounded face) is one. If ǫ = 0, then
the optimal path is st, since C is convex.

First consider an optimal path from s ∈ E1 to t ∈ E2, where E1 and E2

are some edges of C as shown in Figure 7. Let the angle extended by the edges
E1, E2 be θ. If α ≥ 1/ sin (θ/2), then according to Theorem 1, the optimal path
must travel along the border; in this case, we can compute the path traveling
along the edges of C from s to t in O(n) time.

When α < 1/ sin (θ/2), an optimal path must cut through C by Theorem 1.
Therefore, by Lemma 3, there is at most one shared edge ec ∈ Ec. Furthermore,
the angle of incidence on this edge from s and t must be the critical angle (by
Lemma 1). One can employ a binary search on the edges of C to find ec in
time O(log n), since the angle of incidence on the edges of a convex polygon is a
convex function from a fixed point.
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An optimal path from s ∈ Ei to t ∈ Ej , where Ei and Ej are some edges of
C, must be one of the following:

– straight segment st,
– sx, xt where x is the point of critical incidence on some edge Ej ,
– sx1, x1x2, x2t, where x1, x2 are the points of the critical incidence on some

edge ec ∈ Ec from s and t, respectively,
– a path traveling along the edges of the polygon.

Therefore, when α < 1/ sin (θ/2), we can find an exact solution in time
O(log n).

Now we give a construction of weighted exact graph, or exact-graph for short,
G(V, E) that contains edges of the optimal path from s and t. Furthermore, the
number of edges of G is proportional to n. Therefore, we can find an optimal
path in time O(n log n).

Let ei ∈ Ec, vi ∈ Vc be the ith edge, vertex, respectively. Let vertices of G be

V = s ∪ t ∪ Vc ∪ Vs ∪ Vt ∪ Va.

For an edge ei, let si be a point on ei such that ssi is incident on ei at a critical
angle θc. See Figure 8(a) for an example. Notice that there are at most two such
points on any edge. Vs consists of all points sij , i = [1, 2, . . . , n], j = [1, 2].

Similarly, For an edge ei, let ti be a point on ei such that tti is incident on ei at
a critical angle θc. See Figure 8(a) for an example. Notice that there are at most
two such points on any edge. Vs consists of all points tij , i = [1, 2, . . . , n], j =
[1, 2].

Let lis be a line through s parallel to ei. Let xi be the point of incidence
along edge ei obtained by applying Snell’s law (1). Notice that xi may not exist.
Va consists of such points xi for i = [1, 2, . . . , n]. The edge set E consists of:

Ep ∪ Es ∪ Et ∪ Ea ∪ Ev ∪ est

Es = {(s, x) : x ∈ Vs}

Et = {(t, x) : x ∈ Vt}

Ea = {(s, x), (x, t) : x ∈ Va}

Ev = {(s, v) : x ∈ Vc and s /∈ C} ∪ {(t, v) : x ∈ Vc and t /∈ C}
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Notice that the points Vs, Vt, and Va on the edges of C partitions the edges. Ep

consists of all the partitions with their respective end points: est = (s, t), if st
does not intersect more than one region except at the end points. Assign a cost
to an edge equal to its weighted length.

We can construct an exact graph in time O(n log n). Since we add a constant
number of points on each edge, and these points split an edge into a constant
number of partitions, the number of edges and vertices in an exact graph is
linearly proportional to the number of edges of C. An optimal path from s to
t must be along the edges of exact graph. Therefore, a shortest path algorithm
finds the shortest weighted path from s to t in time O(n log n).

5.1 Paths through regular n-gons

Lemma 4. If α ≥ 2, an optimal path never cuts through a regular n-gon. There-
fore, such regions can be considerd as a region of ∞ weight (obstacles).

Proof. Follows directly from Theorem 1.

Observation 3 A convex polygon has at most 3 internal angles greater than
π/3.

Observation 4 A convex polygon having n > 3 sides has at most 2 internal
angles less than π/3.

Lemma 5. A special case of WRP in which the regions are regular n-gons hav-
ing a weight α ≥ 2 can be solved by using the visibility techniques.

Proof. Consider the special case of WRP in which weights are assigned to poly-
gons from the set {1,2}. [4] conjectures that this problem is as hard as the general
WRP problem, in which there are no restrictions on the choice of weights except
being nonnegative. By Lemma 4, a WRP consisting of only regular n-gons each
of weight α ≥ 2 can be considered as obstacles, hence WRP can be solved by
the technique as given in [4].
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