
Constrained Shortest Paths in

Terrains and Graphs

by

Mustaq Ahmed

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2009

c© Mustaq Ahmed 2009

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Finding a shortest path is one of the most well-studied optimization problems. In this thesis we
focus on shortest paths in geometric and graph theoretic settings subject to different feasibility
constraints that arise in practical applications of such paths.

One of the most fundamental problems in computational geometry is finding shortest paths
in terrains, which has many applications in robotics, computer graphics and Geographic Infor-
mation Systems (GISs). There are many variants of the problem in which the feasibility of a
path is determined by some geometric property of the terrain. One such variant is the shortest
descending path (SDP) problem, where the feasible paths are those that always go downhill.
We need to compute an SDP, for example, for laying a canal of minimum length from the
source of water at the top of a mountain to fields for irrigation purpose, and for skiing down
a mountain along a shortest route. The complexity of finding SDPs is open. We give a full
characterization of the bend angles of an SDP, showing that they follow a generalized form of
Snell’s law of refraction of light. We also reduce the SDP problem to the problem of finding an
SDP through a given sequence of faces, by adapting the sequence tree approach of Chen and
Han for our problem. Our results have two implications. First, we isolate the difficult aspect
of SDPs. The difficulty is not in deciding which face sequence to use, but in finding the SDP
through a given face sequence. Secondly, our results help us identify some classes of terrains
for which the SDP problem is solvable in polynomial time. We give algorithms for two such
classes.

The difficulty of finding an exact SDP motivates the study of approximation algorithms for
the problem. We devise two approximation algorithms for SDPs in general terrains—these are
the first two algorithms to handle the SDP problem in such terrains. The algorithms are robust
and easy-to-implement. We also give two approximation algorithms for the case when a face
sequence is given. The first one solves the problem by formulating it as a convex optimization
problem. The second one uses binary search together with our characterization of the bend
angles of an SDP to locate an approximate path.

We introduce a generalization of the SDP problem, called the shortest gently descending
path (SGDP) problem, where a path descends but not too steeply. The additional constraint
to disallow a very steep descent makes the paths more realistic in practice. For example, a
vehicle cannot follow a too steep descent—this is why a mountain road has hairpin bends. We
give two easy-to-implement approximation algorithms for SGDPs, both using the Steiner point
approach. Between a pair of points there can be many SGDPs with different number of bends.
In practice an SGDP with fewer bends or smaller total turn-angle is preferred. We show using a
reduction from 3-SAT that finding an SGDP with a limited number of bends or a limited total
turn-angle is hard. The hardness result applies to a generalization of the SGDP problem called
the shortest anisotropic path problem, which is a well-studied computational geometry problem
with many practical applications (e.g., robot motion planning), yet of unknown complexity.

Besides geometric shortest paths, we also study a variant of the shortest path problem in
graphs: given a weighted graph G and vertices s and t, and given a set X of forbidden paths in
G, find a shortest s-t path P such that no path in X is a subpath of P . Path P is allowed to
repeat vertices and edges. We call each path in X an exception, and our desired path a shortest
exception avoiding path. We formulate a new version of the problem where the algorithm has no

iii

a priori knowledge of X, and finds out about an exception x ∈ X only when a path containing
x fails. This situation arises in computing shortest paths in optical networks. We give an easy-
to-implement algorithm that finds a shortest exception avoiding path in time polynomial in
|G| and |X|. The algorithm handles a forbidden path using vertex replication, i.e., replicating
vertices and judiciously deleting edges so as to remove the forbidden path but keep all of its
subpaths. The main challenge is that vertex replication can result in an exponential number
of copies of any forbidden path that overlaps the current one. The algorithm couples vertex
replication with the “growth” of a shortest path tree in such a way that the extra copies of
forbidden paths produced during vertex replication are immaterial.

iv

Acknowledgments

All praise is due to Allah, the Lord of the Worlds, the Beneficent, the Merciful.

I express my gratitude to my supervisor, Anna Lubiw, for her encouragement and support
for the thesis. Her insightful research ideas and invaluable feedback played a vital role in my
successful completion of the work. It was a great pleasure working with her. I owe to her also
for her generous help and advice on issues not related to research.

I am thankful to my thesis committee members, Timothy M. Chan, Alejandro López-Ortiz,
Joseph Cheriyan and Mark Keil, for their invaluable comments that helped to improve the
thesis. I would like to extend my thanks to Anil Maheshwari for his research ideas, to Erik
Demaine for his useful suggestions on extending my work.

I am indebted to my parents for their sincere inspiration and unconditional support at
every step in my life. I am grateful to my brothers and my sister for their guidance and their
encouragement, my wife for her love and patience, and my son and my daughter for their
soothing company.

I am also thankful to all my teachers, specially M. Kaykobad who introduced me to the
world of research, and provided me with strong encouragement during my undergrad years.

Finally I thank everyone who has contributed to this work in any way.

v

Contents

List of Figures x

1 Introduction 1

1.1 Our results and organization of the thesis . 2

2 Background on Shortest Paths in Terrains 5

2.1 Preliminaries . 5

2.2 Basic approaches . 6

2.2.1 Continuous Dijkstra approach . 6

2.2.2 Sequence tree approach . 8

2.2.3 Steiner point approach . 10

2.3 Relevant shortest path problems in terrains . 11

2.3.1 The weighted region problem . 11

2.3.2 The shortest anisotropic path problem 17

3 Shortest Descending Paths: Towards an Exact Algorithm 20

3.1 Introduction . 20

3.2 Terminology . 21

3.3 Characteristics of a shortest descending path 22

3.3.1 Similarities with a geodesic path . 23

3.3.2 Uniqueness of an SDP through given faces 28

3.3.3 An algorithm for SDPs through given faces using convex optimization . 31

3.3.4 Generalized Snell’s Law . 32

3.3.5 Complete characterization . 37

3.3.6 An algorithm to trace an LSDP along a given initial direction 43

3.3.7 Another algorithm for SDPs through given faces 43

vi

3.4 Sequence tree approach for SDPs . 47

3.4.1 Constructing a sequence tree . 49

3.4.2 Correctness of our construction . 51

3.4.3 Problems in approximating SDPs using sequence trees 55

3.5 Polynomial time algorithms for special terrains 57

3.5.1 Algorithm for pseudo-convex terrains . 57

3.5.2 Algorithm for pseudo-orthogonal terrains 59

3.6 Conclusion . 60

4 Approximation Algorithms for Shortest Descending Paths 62

4.1 Introduction . 62

4.2 Placing the Steiner points for SDPs . 63

4.2.1 Problems in placing Steiner points independently 64

4.2.2 Problems in placing Steiner points in geometric progression 65

4.3 Using uniform Steiner points . 66

4.3.1 Algorithm . 66

4.3.2 Correctness and analysis . 68

4.4 Using Steiner points in geometric progression 71

4.4.1 Algorithm . 71

4.4.2 Correctness and analysis . 73

4.5 Conclusion . 76

5 Shortest Gently Descending Paths 78

5.1 Introduction . 78

5.2 Terminology . 80

5.3 Properties of SGDPs . 82

5.4 Approximation using uniform Steiner points . 86

5.4.1 Algorithm . 86

5.4.2 Correctness and analysis . 87

5.5 Approximation using non-uniform Steiner points 89

5.5.1 Correctness and analysis . 90

5.6 Hardness of SGDPs with few bends . 92

5.6.1 Overview . 92

5.6.2 Elementary gadgets . 94

vii

5.6.3 The Path Bundle and its labeling . 95

5.6.4 Intermediate gadgets . 96

5.6.5 Main gadgets . 99

5.6.6 Correctness . 100

5.6.7 Constructing a terrain without vertical faces 101

5.7 Hardness of SGDPs with limited total turn-angle 102

5.8 Conclusion . 103

6 Shortest Paths avoiding Forbidden Subpaths 105

6.1 Introduction . 105

6.1.1 Motivation . 106

6.1.2 Preliminaries . 107

6.1.3 Relaxation . 108

6.1.4 Related work . 109

6.2 A generic algorithm for a shortest s-t path . 110

6.2.1 Modifying the graph . 111

6.2.2 Constructing the tree . 112

6.3 Correctness and analysis . 113

6.3.1 Justifying the graph modification . 113

6.3.2 Justifying the tree construction . 114

6.3.3 Analysis of timing . 115

6.3.4 Relaxing the edges efficiently . 116

6.4 Algorithms for specific graph classes . 117

6.5 Computing shortest paths to all vertices . 119

6.6 Handling a weaker oracle . 120

6.7 Conclusion . 122

7 Conclusion 124

References 133

viii

List of Figures

2.1 Handling candidate intervals in the continuous Dijkstra approach. 7

2.2 One-angle one-split property for sequence tree for shortest Euclidean paths. . . 9

2.3 Placing Steiner points non-uniformly. 11

2.4 Complications with shortest paths in the weighted region problem. 12

2.5 Non-uniformly placed Steiner points. 14

2.6 Utilizing Snell’s law with approximate paths. 15

2.7 Maintaining the list Ie,e′ in the Bushwhack algorithm. 16

2.8 Links between the Steiner points along two bisectors. 17

2.9 The model of Rowe and Ross for shortest anisotropic paths. 18

3.1 General legend for all figures in this section. 23

3.2 An LSDP visiting a face twice. 24

3.3 Entering and exiting angles. 25

3.4 Proving that |pq′| + |q′r| < |pq| + |qr| for any q′ is inside △pqr. 25

3.5 Showing that an unfolded LSDP is not a straight line segment. 26

3.6 A terrain in which an SDP is very different from a shortest path. 27

3.7 Two descending paths that follow Lemma 3.4, but of different lengths. 28

3.8 Proving strict convexity of L(x1, x2, . . . , xk). 29

3.9 Expressing λi,i+1 in terms of νi and νi+1. 33

3.10 Path Q with all intermediate nodes at height h(pc). 34

3.11 Proving that two SDPs from s are diverging. 38

3.12 Defining δ for the continuity argument in Lemma 3.12. 39

3.13 Two LSDPs from s with h(p1) > h(q1) and h(p2) < h(q2). 40

3.14 Proving the existence of a segment that extends the LSDP P0 in Lemma 3.13. . 40

3.15 Constructing the paths P = P0, P1, P2, . . . , Pd = Q to prove that Q is longer
than P in the proof of Theorem 3.2. 42

ix

3.16 The SDP from pi−1 to t does not cross P (pi−1, v) when v 6= w. 46

3.17 The sequence tree for a part of the terrain. 48

3.18 Expanding an edge-node. 51

3.19 Proving that the face/vertex sequence σ1f2 can be discarded when P2 is shorter
than P1. 52

3.20 Figure 3.19 repeated for convenience. 56

3.21 LSDPs in a pseudo-convex terrain. 58

3.22 Impossible subpaths of an LSDP in a pseudo-orthogonal terrain. 59

4.1 Problems with independently placed Steiner points. 65

4.2 An SDP that comes close to a vertex O(n) number of times. 66

4.3 Finding an SDP from s to an interior point v of a face and an edge. 67

4.4 Bounding |pip
′
i| for uniform Steiner points. 69

4.5 Vicinity of a vertex. 72

4.6 Bounding |pip
′
i| for non-uniform Steiner points. 74

5.1 Descending gently towards a steep direction. 78

5.2 The cone defined by the lines at an angle ψ with a vertical line at p, and a steep
line segment pq. 81

5.3 Critical paths from a to b in face f . 84

5.4 A critical path from a vertex a that is locally sharp in f = f0, but not in fk. . 84

5.5 An SGDP between two locally sharp vertices a and b in f that goes through
Θ(d) other faces. 85

5.6 Clause Filters along the Path Bundle. 93

5.7 A Splitter. 94

5.8 A Blocker. 95

5.9 The Path Bundle in the initial terrain (n = 3). 96

5.10 A Tripler and a Reverse Tripler. 97

5.11 A Shuffler. 98

5.12 The structure of the Literal Filter for b̄2 (n = 4). 99

5.13 Determining the values of ψ, and the slope of f1 when f1 is not vertical. 102

6.1 Shortest paths and shortest exception avoiding paths in a graph. 110

6.2 Modifying Gi−1 to Gi. 112

6.3 The graph in Figure 6.2(c) without the incoming edges of the intermediate ver-
tices of xi. 117

x

Chapter 1

Introduction

The shortest path problem is one of the most well-studied optimization problems, where the
goal is to find a path of smallest possible length among all the paths that go from one point to
another in a given domain. The classical domain for the problem is a graph with a weight for
each of the edges, and a well-studied definition of the length of a path in the graph is the total
weight of the edges in the path. Shortest paths in graphs have many practical applications.
One popular example is finding the fastest driving route between two points in a city, where
the graph corresponds to the road map of the city, with nodes representing intersections, and
the weight of an edge between two intersections representing the time needed to drive from
one of the intersections to the other. Other applications of the graph shortest path problem
include network routing (e.g., Wang et al. [100]) and VLSI design [19, Section 23.3]. The
problem is important for a wide range of other applications that do not involve “physical”
paths. Arbitrage (i.e., exploiting the discrepancies in currency exchange rates [34, page 615]),
algorithmic game theory (e.g., determining pricing policy for resources in the Internet [56]),
industrial automation (e.g., Mo et al. [72] and Wilhelm et al. [101]) and operations research
(e.g., Hillier and Lieberman [58]) are examples of such applications.

The shortest path problem has also been studied in geometric settings, where the problem
domain is specified by a set of geometric objects. For example, one of the simplest geometric
shortest path problems is: given a set of obstacles in the plane, find a path of smallest Eu-
clidean length that avoids all the obstacles. Unlike the case of a graph, a geometric domain is
continuous in nature, i.e., we can modify a feasible path into another in a continuous manner.
Many special cases of the geometric shortest path problem can be defined by choosing various
parameters of the problem, like the dimension of the domain (e.g., 2D or 3D), the metric used
for path length (e.g., Euclidean or L1 distance), the presence and type of obstacles (static or
moving), and so on. The survey by Mitchell [69] discusses many of these special cases. Finding
shortest paths in polyhedral terrains is one such problem, which has been studied extensively
in computational geometry for a long time. This problem has many practical applications such
as robotics (e.g., Rowe and Ross [81]), computer graphics (e.g., Lee et al. [65] and Surazhsky et
al. [93]), and geographic information systems (e.g., Floriani et al. [46] and Upchurch et al. [97]).

In this thesis we focus on shortest paths in terrains and graphs subject to different feasibility
constraints arising in practical applications of such paths. An example such a constraint for
the case of terrain shortest paths is the steepness: when going downward from a mountain,

1

a car cannot follow a steep direction for safety reasons. On a mountain road, hairpin bends
are used so that a car can avoid a steep direction. For terrain shortest paths, we consider two
geometric constraints regarding relative heights of points in a path. In graphs, we consider a
combinatorial constraint faced by paths in an optical network.

Our goal here is to devise polynomial time algorithms that compute exact shortest paths
if possible, and to devise approximation algorithms otherwise. The term “polynomial time”
means polynomial in the size of input instance. One issue regarding shortest paths in a geo-
metric setting is that Euclidean path lengths, which involve sums of square roots, cannot be
computed exactly from point coordinates, and no bound is known on the number of bits that
are needed to guarantee an accurate comparison between two path lengths. See Problem 33 in
the Open Problems Project [40] for a discussion of this issue. Because of this, it is conventional
to use the real RAM model of computation, where real numbers can be stored and operated
on at unit cost. Details on this model can be found in Preparata and Shamos [78, Section 1.4].

Another issue regarding algorithms for computational geometry problems is that the run-
ning time of such algorithms often depend on various geometric parameters of the input instance
(besides the size of the input), and in many cases these parameters reflect the inherent sim-
plicity or difficulty of the input instance—see Afshani et al. [1] for a few examples and de Berg
et al. [36] for a discussion. The geometric parameters that determine the running times of our
algorithms for terrain shortest paths include the lengths and inclinations of the terrain edges,
and the size of the “narrowest” terrain face.

For the case of an approximation algorithm for geometric shortest paths, we are interested
in a (1 + ǫ)-approximation algorithm, which takes as input an instance of an optimization
problem and a parameter ǫ > 0, and returns, in time polynomial in the size of input, 1

ǫ and
some geometric parameters, a solution that is within a factor (1 + ǫ) of the optimal solution.
A (1 + ǫ)-approximation algorithm for a shortest path problem returns a path whose length
(in appropriate path length metric) is at most (1 + ǫ) times the length of a shortest path.

1.1 Our results and organization of the thesis

This thesis examines constrained shortest paths in terrains in Chapters 3 to 5, and constrained
shortest paths in graphs in Chapter 6.

Before that, we provide in Chapter 2 some background on the terrain shortest path problem.
More precisely, we present three elementary approaches that have been used for finding shortest
paths in terrains, and discuss their application to two terrain shortest paths problems closely
related to the problems we study in Chapters 3 to 5.

Note that the background needed for our graph shortest path problem in Chapter 6 appears
in that same chapter. This is because this background is needed only in that chapter.

In Chapter 3 we study the the shortest descending path (SDP) problem, where the feasible
paths are those that always go downhill. The problem was introduced by de Berg and van
Kreveld [37]. We need to compute an SDP, for example, for laying a canal of minimum length
from the source of water at the top of a mountain to fields for irrigation purpose, and for skiing
down a mountain along a shortest route. There is no known polynomial time algorithm for the
SDP problem, nor is the problem known to be NP-hard. Previously known exact algorithms

2

for the problem were for two special classes of terrains, and they provided very little insight
on the “structure” of SDPs in a general terrain. It was a mystery why the problem is so easy
for those two special classes of terrain yet unsolved for the general case. We explore some
structural properties of an SDP, and show that the path obeys a generalized form of Snell’s law
of refraction of light. We also reduce the SDP problem to the apparently simpler problem of
finding an SDP through a given sequence of faces. Our results have two implications. First, we
isolate the difficult aspect of SDPs. We show that the difficulty is not in deciding which face
sequence to use, but in finding the SDP through a given face sequence. Secondly, our results
help us identify some classes of terrains for which the SDP problem is solvable in polynomial
time. We give algorithms for two such classes.

Chapter 3 also gives two approximation algorithms for the case when a face sequence is
given. The first one solves the problem by formulating it as a convex optimization problem.
The second one utilizes the structural properties of an SDP in binary search to locate an
approximate path.

Because finding an exact SDP in general terrains seems to be a difficulty problem, it is
natural to look for approximation algorithms. In Chapter 4 we devise two approximation
algorithms for SDPs in general terrains. These are the first two algorithms to handle the
problem in such terrains. Both the algorithms solve the problem by transforming the geometric
shortest path problem into a graph shortest path problem. The idea is to discretize the terrain
by adding many points, called the Steiner points, along the terrain edges, and then construct
a graph of those Steiner points in such a way that any path in the graph approximates nearby
paths in the terrain. The resulting algorithms are robust and easy-to-implement. The running
times of the two algorithms are not comparable because one is faster in terms of the edge
inclinations of the terrains, while the other is faster in terms of other geometric parameter as
well as n.

In Chapter 5 we introduce a generalization of the SDP problem, called the shortest gently
descending path (SGDP) problem, where a path descends but not too steeply. The additional
constraint to disallow a very steep descent makes the paths more realistic when, for example, a
vehicle cannot follow a too steep descent on the slope of a mountain. We explore some properties
of SGDPs, and give two easy-to-implement approximation algorithms for the problem. These
algorithms transform the problem into a graph shortest path problem in the same manner as
in Chapter 4.

There can be infinitely many SGDPs between two points, and they can have different
number of bends. In practice, for example in robot motion planning, an SGDP with fewer
bends is preferred because at every bend a robot will need extra time and energy to change
its direction. We show in Chapter 5 using a reduction from 3-SAT that finding an SGDP
with a limited number of bends is NP-hard. We give a similar result for the case when,
instead of a limit on the number of bends, we have a limit on the total turn-angle, i.e., on
the amount of rotation made by a robot at all bends. Our hardness results apply to the more
general problem of finding a shortest anisotropic path in a terrain, a well-studied computational
geometry problem for which neither a polynomial time algorithm nor a hardness result is known.

In Chapter 6 we study a variant of the shortest path problem in graphs: given a weighted
graph G and vertices s and t, and given a set X of forbidden paths in G, find a shortest
s-t path P such that no path in X is a subpath of P . Path P is allowed to repeat vertices

3

and edges. We call each path in X an exception, and our desired path a shortest exception
avoiding path. We formulate a new version of the problem where the algorithm has no a priori
knowledge of X, and finds out about an exception x ∈ X only when a path containing x
fails. This situation arises in computing shortest paths in optical networks. We give an easy-
to-implement algorithm that finds a shortest exception avoiding path in time polynomial in
|G| and |X|. The algorithm handles a forbidden path by replicating vertices and judiciously
deleting edges in such a way that the forbidden path is removed from the graph but all of
its subpaths remain. The main challenge is that such replication of vertices can result in
an exponential number of copies of any forbidden path that overlaps the current one. Our
algorithm couples vertex replication with the “growth” of a shortest path tree in such a way
that the extra copies of forbidden paths produced during vertex replication are immaterial.
The algorithm depends on a (conventional) shortest path algorithm, and works for directed
acyclic graphs, graphs with non-negative edge-weights, and graphs with negative edge-weights
but no negative weight cycle.

4

Chapter 2

Background on Shortest Paths in

Terrains

This chapter gives background on shortest paths in terrains. This will be helpful in under-
standing our results in Chapters 3 to 5. Note that the background on graph shortest paths can
be found in Chapter 6.

One of the earliest works on shortest paths in polyhedral surfaces is the one by Sharir and
Schorr [88], which finds a shortest Euclidean path on a convex polyhedron in O(n3 log n) time.
Since then, many papers have focused on exact and approximation algorithms for the problem
and its variants [2, 3, 13, 14, 15, 27, 28, 31, 52, 53, 54, 55, 61, 63, 70, 71, 75, 87, 92, 98]. In
this chapter we present three basic approaches used in finding different variants of shortest
paths on terrains. The approaches are: the continuous Dijkstra approach [70], the sequence
tree approach [28], and the Steiner point approach [76]. (There is another interesting idea
called the wavefront propagation approach [61]. We do not cover this approach in this section,
as the approach lacks certain details. See Schreiber and Sharir [87] for a brief discussion on
this issue.) We then discuss the application of these approaches to two terrain shortest path
problems: the weighted region problem and the shortest anisotropic path problem. We choose
these two variants because they are closely related to the problems we study in Chapters 3
to 5.

We give definitions of elementary terms in Section 2.1, and then describe the basic ap-
proaches and their applications in Sections 2.2 and 2.3 respectively.

2.1 Preliminaries

A terrain is a 2D surface in 3D space with the property that every vertical line intersects it
in a point [38]. We adapt a slightly generalized definition that every vertical line intersects a
terrain in a single line segment, in order to allow a terrain with vertical edges and faces. We
consider triangulated terrains because any terrain can be triangulated in O(n) time [26]. For
the terrain shortest path problem, we are given two points s and t on the terrain, and we want
compute a shortest path from s to t. We make s and t vertices of the terrain in a trivial way.

5

Let n be the number of vertices in the terrain. By Euler’s formula [38, Page 29], the terrain
has at most 3n edges, and at most 2n faces.

We use “shortest paths” to denote “shortest Euclidean paths” in this chapter. A geodesic
path (also called a locally shortest path) between two nodes is a path that cannot be shortened
by slight perturbation of the intermediate nodes. It is known that a geodesic path becomes
a straight line segment when the faces crossed by the path are unfolded onto a plane [70].
One important issue is that it is practically impossible to store the exact Euclidean length of
an unfolded geodesic path—representing the lengths with a floating point number introduces
errors, as does rotating a face around an edge for unfolding [2, 20, 21]. In fact, given two
geodesic paths through two different face sequences, we do not know how to compute, with a
polynomially bounded number of bits, which of the paths is shorter. It means that shortest
path problems are not known to lie in NP. It also means that algorithms assume a model of
computation, e.g., the real RAM model, in which square roots can be computed accurately in
constant time.

For ease of discussion, we use the following convention in this chapter and also in the
chapters on graph shortest paths (Chapters 3 to 5). The term “edge” denotes an edge of a
(triangular) terrain face, and the term “segment” denotes a line segment of a path. Similarly,
an endpoint of an edge is called a “vertex”, while an endpoint of a segment is called a “node”.

2.2 Basic approaches

2.2.1 Continuous Dijkstra approach

One popular approach used in finding a shortest path on a polyhedral surface or a shortest
obstacle-avoiding path in 2D is the continuous Dijkstra approach. Although similar ideas were
used before [74, 88], Mitchell, Mount and Papadimitriou [70] formalized the idea for the first
time in their algorithm for the discrete geodesic problem, where the goal is to find a shortest
path from s to any other vertex in a polyhedral surface. We will now give details of this
approach because this will make it easy to understand the sequence tree approach (discussed
in the next section), which we will use in Chapter 3.

As the name suggests, the continuous Dijkstra approach is similar to Dijkstra’s algo-
rithm [44] for shortest paths in graphs: intuitively, a “signal” starts propagating from s over
the surface at a constant speed, so that the moment a point on the surface receives the signal
for the first time determines its shortest distance from s. In the continuous Dijkstra approach,
the edges of the surface behave like nodes of a graph, except that there is no unique distance
from s to an edge. To keep track of the distances of the points in an edge, each edge is subdi-
vided into intervals of optimality such that the shortest path to any point in an interval has
the same discrete structure, passing through the same sequence of vertices and edges. These
intervals are determined using a set of dynamic intervals, called the candidate intervals, each
of which is a superset of some (possibly empty) interval of optimality. For each edge e, and
each face f adjacent to e, the algorithm maintains the property that the candidate intervals
for the shortest paths crossing f to reach e are non-overlapping. The candidate intervals are
created in the order of their distances from s, starting with a candidate interval to cover each
edge opposite to s. At each step, one candidate interval is propagated onward to the next

6

face to create (at most) two other intervals (Figure 2.1(a)). As the algorithm proceeds, the
candidate intervals on edge e shrink when new candidate intervals on e are created, and they
finally converge to the corresponding intervals of optimality in the order of their endpoints’
distances from s. Dijkstra’s algorithm on a graph works in a very similar way: an over-estimate
of the nodes’ distances from s are assigned to the nodes, which are gradually decreased to the
actual distances in increasing order of the actual distances.

Before giving further details of the approach, we will mention two properties of a geodesic
path that are utilized here. The first property is that a geodesic path becomes a straight line
segment when the faces crossed by the path are unfolded onto a plane. This is obvious because
otherwise the path could be made shorter by moving the bend-point in a certain direction.
Another property is that two geodesic paths from s through two different face sequences cannot
intersect each other at an interior point of a face (otherwise, if they intersect at an interior
point p of a face, both paths could be made shorter by first swapping their prefixes at p and
then taking shortcuts around p.)

The algorithm uses a few simple data structures as follows. A list L of all candidate intervals
is maintained. Each candidate interval stores its left and right endpoints on the corresponding
edge, the nearest point in it from s—called its frontier point, and the candidate interval that
precedes it on the path from s. For each edge e, and each face f adjacent to e, a list of
candidates intervals for the shortest paths that cross f to reach e is maintained; the intervals
in this list are sorted in the order they appear along e (note that these candidate intervals are
disjoint). There is a priority queue Q of points that are labeled with the points’ best known
distances from s. Only the endpoints and the frontier points of candidate intervals, and the
vertices are pushed into the queue.

s

I

I2 I1

(a)

s

I ′j

s

p

Ijej

(b)

Figure 2.1: Handling candidate intervals in the continuous Dijkstra approach.

The algorithm is as follows. In the beginning, s is labeled with zero. For each edge opposite
to s, a candidate interval covering the entire edge is created and stored in L. The frontier points
and the endpoints of these intervals are pushed into Q. In the main loop, the point with smallest
label is removed from Q, and if this is a frontier point of an interval I, the paths bounding
I are traced forward into the next face to create two new intervals I1 and I2 on edges e1 and
e2 respectively, as shown in Figure 2.1(a). Each new interval Ij , j ∈ {1, 2}, is then stored in
L, and its frontier point and the endpoints are pushed into Q. However, if Ij overlaps with

7

existing candidate intervals on ej , some of the involved intervals are trimmed in the following
way before the mentioned points are pushed into Q. Using the location of frontier points of
the intervals preceding the existing candidate intervals on ej , the position of Ij with respect
to existing candidate intervals I ′j on ej is determined. Then if one or more intervals I ′j are
dominated by Ij , they are deleted. Otherwise, a point p ∈ Ij ∩ I ′j is determined for which the
shortest paths through the face sequences used by Ij and I ′j are of equal lengths, as shown in
Figure 2.1(a). As per the figure, the part of Ij to the right of p and the part of I ′j to the left
of p are then trimmed.

A geodesic path can bend at a non-convex vertex (i.e., at a vertex at which the total of
the face angles is more than 2π), and propagating an interval of optimality along straight lines
through such a vertex v does not cover all face angles around v. To handle this issue, new
candidate intervals are created in the “uncovered” face angles around v, in the same way new
candidate intervals are created for s. However, unlike s the distance of a non-convex vertices is
positive, and this distance is determined by considering the non-convex vertex as an endpoint
of some interval of optimality (as in the case of other vertices).

The algorithm takes O(n2 log n) time and O(n2) space to build a tree of intervals of opti-
mality because there are O(n2) intervals of optimality (and candidate intervals). Using this
tree the shortest path from s to any point on the surface can be determined in O(k + log n)
time, where k is the length of the path.

2.2.2 Sequence tree approach

Chen and Han [28] introduced a new approach to find a shortest path on a polyhedral surface.
They construct a tree, called a sequence tree, which captures all the possible edge/face sequences
used by the shortest paths from s. Each node in a sequence tree represents either a vertex
of the polyhedron or a portion of an edge. We will call the portion of an edge represented
by a node of the tree an interval because it is very similar to the intervals of optimality used
by Mitchell, Mount and Papadimitriou [70]: all points in an interval are reachable from s
using geodesic paths through a common sequence of faces and vertices. However, unlike the
intervals of optimality, the intervals in the sequence tree are not only for shortest paths—some
of them are for non-shortest geodesic paths and they may get deleted as the algorithm proceeds.
Another difference is that the intervals lying on an edge are not disjoint from one another.

The tree is rooted at a node representing s, and the path from the root to a node v in the
tree corresponds to a sequence σ of intervals that can be traversed by a geodesic path from
s to any point in the the interval I represented by v. In other words, after unfolding all the
faces involved in σ into a plane, the straight line segment connecting s to any endpoint of I
stabs all the intervals in I. It is straightforward to construct a sequence tree that stores edge
sequences of all geodesic paths: to grow the tree at a node for interval I on e, take the wedge
of geodesic paths arriving at I and extend it via straight lines into the unfolded face on the
other side of e, adding new tree nodes for the (one or two) intervals thus created (Figure 2.1(a)
shows the same scenario, but for the intervals of optimality). The tree may be truncated at
depth 2n because any shortest path traverses at most 2n faces, but even so, the tree can be
exponentially large because each node can have two children. Chen and Han give a property of
geodesic paths, called the one-angle one-split property, that can be used to prune the tree to
size O(n2): for any two intervals I1 and I2 lying on edge e in face f , if the wedges of both the

8

intervals split at vertex v ∈ f opposite to e (Figure 2.2), one of the four split intervals cannot
lead to a shortest path. More precisely, if the distance of v from s through the face sequence
determined by I1 is more than its distance from s through the face sequence determined by I2,
then no shortest path crosses both I1 and I12 in Figure 2.2, because the longer geodesic path
cannot yield shorter paths on both sides of v. This implies that it is sufficient to store one split
for each face angle. The number of leaf nodes in the tree then becomes O(n) because each of
the O(n) face angles contributes at most one extra “branch” in the tree. Since there are O(n)
levels, the total number of nodes becomes O(n2).

Note that extending a wedge through a non-convex vertex is not easy, since a geodesic path
can bend at a non-convex vertex. Chen and Han handle this issue by treating the non-convex
vertices as a pseudo-source: they make a new node in the sequence tree each time a non-convex
vertex splits a wedge, and then they start a new set of wedges of geodesic paths around that
vertex. The new node represents the face angle encountered by the “arriving” wedge, and
stores the vertex’s distance from s through the corresponding face/vertex sequence.

s
s

I1

I12

v

e

f

I21

I2

I22

I11

Figure 2.2: One-angle one-split property for sequence tree for shortest Euclidean paths.

The number of nodes can be decreased further to O(n) by deleting the nodes with only one
child, i.e., by removing the intervals for which there is only one “child interval”. This is done
during the time the tree is being expanded level-wise, resulting in an O(n2) time and O(n)
space algorithm to build the tree.

After the tree is constructed, the shortest path to any vertex can be determined in O(n)
time as follows. There can be at most O(n) nodes in the tree for a particular vertex v—one
for each face angle at v. After locating among them the node with the smallest distance from
s, the sequence of faces/vertices is determined by traversing the tree upward to the root. The
shortest path is then computed from the sequence in a trivial manner.

The preprocessing phase of the sequence tree approach is faster than that of the continuous
Dijkstra approach. The query phase of the sequence tree approach is slower, and is limited
to the vertices of the surface while for the continuous Dijkstra approach the query point can
be any point on the surface. The sequence tree approach is easier to implement, and less
vulnerable to inaccuracies in calculations involving floating point numbers because it does not
require a priority queue, and does not require splitting an interval at a point equidistant from
s through two face sequences. However, the sequence tree approach needs to compare two path

9

lengths to apply the one-angle one-split property, and it is practically impossible to represent
these lengths accurately. Kaneva and O’Rourke [60] implemented the sequence tree approach
successfully using some heuristics, but no error analysis is known to support this experimental
result.

2.2.3 Steiner point approach

Papadimitriou [76] first introduced the idea of discretizing space by adding Steiner points and
approximating a shortest path through the space by a shortest path in the graph of Steiner
points. The problem he studied is to find a shortest obstacle-avoiding path in 3D. More
precisely, given a polyhedral scene, i.e., a set of polyhedra given in terms of the coordinates
of the vertices, and two points s and t, the goal is to find the shortest path from s to t that
avoids all the polyhedra in the scene. Here the word “avoids” means that the path is disjoint
from the interiors of all the polyhedra. For this problem computing an exact solution is NP-
hard [24]. Note that although the algorithm of Papadimitriou does not deal with shortest paths
on terrains, we are still discussing it because it was adopted for shortest paths on surfaces later
on (See Sections 2.3.1 and 2.3.2).

To determine a (1 + ǫ)-approximate shortest path, Papadimitriou first discretizes the scene
by subdividing each edge into a number of small parts. A graph G is then constructed as
follows. Graph G contains a node for each part of an edge. Two nodes in G are connected
by a link if and only if there exists an obstacle-avoiding straight-line path connecting the
corresponding parts of the edges. The weight of a link is the distance between the midpoints
of the corresponding parts of the edges. Note that because a node in G represents a part of an
edge rather than a single point on that edge, the existence of a link does not necessarily mean
that the midpoints of the corresponding parts of the edges are “visible” from each other. After
a shortest s-t path P in the graph is constructed using Dijkstra’s algorithm [44], the desired
path is obtained by adjusting each segment of P individually to avoid obstacles if necessary,
and then connecting each pair of consecutive segments that have been disconnected (by the
adjustment) with a small segment along the corresponding edge.

The main trick here is to ensure that the parts of the edges are so small that the distance
between any two points in two different parts can be considered constant, and the resulting
relative error in the calculation is bounded by ǫ. This is achieved by placing a sequence
(. . . , xe

−2, x
e
−1, x

e
0, x

e
1, x

e
2, . . .) of Steiner points on each edge e as follows (Figure 2.3). Let de

be the distance of e from s. Point xe
0 is the nearest point in e from s; xe

1 is a points such
that |xe

1x
e
0| = ǫ

4nde; and for i > 1, xe
i is a point on the same side of xe

0 as xe
1 such that

|xe
ix

e
0| = (1 + ǫ

4n)|xe
i−1x

e
0|. The points xe

−1, x
e
−2, . . . are placed in the same manner on the

other side of xe
0 on e. Such placement of Steiner points guarantees that there are at most

O(n2

ǫ (L + log(n/ǫ))) parts in each edge, and that the length of a part is at most ǫ
4n times the

straight-line distance of the part from s, where L is the number of bits needed to represent the
coordinates of the scene. Using these bounds, the running time of the algorithm can be shown
to be O(n4

ǫ2
(L + log(n/ǫ))2).

Papadimitriou [76] also gave a faster O(n3

ǫ (L + log(n/ǫ))2)-time algorithm, which is rather
complicated. The idea is that in this algorithm the distance between any two points in two
different parts of the edges is approximated by a linear function of the points’ coordinates,
unlike the previous algorithm which approximates the distance with a constant.

10

s

xe
0

xe
1

xe
2xe

−2xe
−3 xe

3 xe
4

xe
−1

Figure 2.3: Placing Steiner points non-uniformly.

Choi, Sellen and Yap [32] later on showed that the result in Papadimitriou [76] is in the bit
model, yet some critical part of his analysis are based on the real RAM model. Choi, Sellen
and Yap filled in the details in the bit model.

2.3 Relevant shortest path problems in terrains

2.3.1 The weighted region problem

The weighted region problem [on terrains] is a generalization of the shortest path problem on
polyhedral surfaces. In this problem, a set of constant weights is used to model the difference
in costs of travel in different regions on the surface, and the goal is to minimize the weighted
length of a path. The weighted length of a path is the sum of the weighted lengths of its
segments, where the weighted length of a segment is defined as the Euclidean length of the
segment times the weight of the face containing the segment. The complexity of the weighted
region problem is still unknown. Mitchell and Papadimitriou [71] first studied the problem,
and gave an approximation algorithm utilizing certain properties of a locally shortest path in
weighted regions. Several faster approximation schemes [13, 14, 15, 63, 92] have been devised
later on, all using the Steiner point approach. A comparison between these algorithms can be
found in Aleksandrov et al. [15]. In this section we will focus on how the approaches mentioned
in Section 2.2 have been employed in these algorithms.

Note that although Mitchell and Papadimitriou [71] defined the weighted region problem
in 2D (i.e., for a planar subdivision), all the later papers focused on the problem in terrains.
In this thesis we will use “weighted region problem” to denote this more general version of the
problem.

Mitchell and Papadimitriou [71]

Mitchell and Papadimitriou [71] used the continuous Dijkstra approach to solve the weighted
region problem in the plane. Although the algorithm works in the same manner as the con-
tinuous Dijkstra approach for shortest paths by Mitchell, Mount and Papadimitriou [70], the
details are trickier. The main reason for this difference is that while a geodesic path in the
discrete geodesic problem lies along a straight line, this is not the case in the weighted region
problem. In this case, if a locally shortest path P crosses an edge e at point x to travel from a
face f1 of weight w1 into a face f2 of weight w2, P bends at x, and the angles P makes with the
perpendicular on e at x obeys Snell’s law of refraction of light. More precisely, if ψ1 and ψ2 are
the angles P makes with the perpendicular on e at x in f1 and f2 respectively (Figure 2.4(a)),

11

then w1 sinψ1 = w2 sinψ2. Besides the bends along P , there are several other issues that make
the algorithm complicated:

(i) Assuming w1 > w2, angle ψ2 can be as large as π
2 , implying that a locally shortest path

can contain a segment that is a part of an edge. This is impossible in the discrete geodesic
problem.

(ii) For the same reason, if w1 < w2 and ψ1 = π
2 , path P can leave e at any position of x,

implying that there is no unique way to trace P onward (Figure 2.4(b)).

(iii) A shortest path can cross a single region many times, as shown in Figure 2.4(c), where
the shaded regions have weights significantly higher than the weight of the white region.
This cannot happen in the discrete geodesic problem, although geodesic paths in both
the problems may cross a single face multiple times (e.g., a path spiraling down from the
apex of a pyramid to its base can be locally shortest in both the problems).

These issues make the number of events handled in this algorithm O(n4), which is significantly
more than O(n2) events in the discrete geodesic problem.

x

f1

f2

ψ1

ψ2

e

(a)

x

f1

f2

ψ1

ψ2

e

(b)

s
t

(c)

Figure 2.4: Complications with shortest paths in the weighted region problem.

There is another issue that makes this algorithm even slower. During the trimming of a can-
didate interval in the continuous Dijkstra approach, we need to solve the following sub-problem:
given the sequence of edges crossed by a geodesic path, determine the length of the path. For
the discrete geodesic problem, this sub-problem can be solved in constant time because the
unfolded path lies along a straight line. For the weighted region problem, determining the
path length requires solving a set of equations involving sines of angles, which is not easy—we
will briefly discuss the issue in Section 3.6. Mitchell and Papadimitriou used binary search
to solve this sub-problem approximately, which results in a O

(

n8 log
(

n
ǫ

))

time approximation
algorithm for the weighted region problem.

Lanthier, Maheshwari and Sack [63]

Lanthier, Maheshwari and Sack [63] gave three approximation schemes for the weighted region
problem. The schemes are simple and practical, but the returned paths have additive errors.

Their first scheme (called the “fixed scheme”) places m = n2 Steiner points evenly on every
edge of the terrain, and then constructs a weighted graph G as follows. For each face fi, a
graph Gi is formed, which has all the vertices and Steiner points in fi as nodes, and has a link
between nodes x and y if and only if either x and y lie on different edges of fi, or x and y are

12

adjacent on a common edge of fi. The weight of each link of Gi is the weighted length of the
corresponding segment in fi. Graph G is the union of Gi over all faces fi of the terrain. An
approximate path is formed by running Dijkstra’s algorithm on G. The length of the returned
path is at most WL plus the length of the shortest path, where W is the largest face weight,
and L is the length of the longest edge. The space and time requirements are O(n3) and O(n5)
respectively.

The second scheme of Lanthier et al. (called the “interval scheme”) places just enough
Steiner points on every edge to make the distance between adjacent Steiner points at most
L
n2 . Since the long edges of the terrain contain the same number of Steiner points as in
their first scheme, the worst case bounds for approximation error, space requirement and time
requirement remain the same. However, the second scheme performs better when many edges
in the terrain have lengths much less than L.

The third scheme (called the “spanner scheme”) eliminates certain links in G to form a
smaller graph G′ which approximates any path in G within a constant factor β > 1. In
graph terminology, G′ is called a β-spanner of G. Lanthier et al. construct G′ by following
the approach of Clarkson [33]: for every node x, the plane is first decomposed into a constant
number of cones with apex at x, and then within each cone all the links emanating from x
are removed except the one having the smallest weighted length. If the number of cones at a
node is k > 4, then β = 1

cos(π/k)−sin(π/k) . Graph G′ thus formed has a constant number of links

at every node, which improves the running time to O(n3 log n), although the approximation
error becomes much greater: the length of the returned path is now β times the length of the
approximate path returned by the other two schemes.

Lanthier et al. also gave experimental results that suggest that placing a small (hence
constant) number of Steiner points per edge results in a good approximation for a “typical”
terrain.

Aleksandrov et al. [13]

The main difference of the algorithm of Aleksandrov et al. [13] from that of Lanthier, Mahesh-
wari and Sack [63] is that Aleksandrov et al. do not place Steiner points uniformly along the
edges. Like Papadimitriou [76], they place the Steiner points in such a way that their distances
from a particular end of the edge form a geometric progression. This approach significantly re-
duces the size of the graph, and has been used in several other terrain shortest path algorithms,
including two algorithms in this thesis. We will now briefly explain this approach.

Let φ be the face angle of a triangular face at vertex u, and e be an edge adjacent to u
in that face (Figure 2.5(a)). If xi and xi+1 are two consecutive Steiner points on e such that
|uxi+1|
|uxi| = 1 + ǫ sin φ where ǫ is a small constant, then it can be shown that for any segment pq

that reaches a point q ∈ xixi+1 from the other edge at u in the same face, |xixi+1| ≤ ǫ|pq|. It
then follows easily that the length of the link connecting any of the two Steiner points near p
with any of the two Steiner point near q is bounded by (1 + 2ǫ)|pq|. Thus every segment of a
shortest path is approximated by a nearby segment connecting two Steiner points.

The main problem with such placement of Steiner points is that the points become infinites-
imally close to one another near the vicinity of u, resulting in a very large number of Steiner

13

u

xi

xi+1

p

q

e

φ

(a)

u

(b)

Figure 2.5: (a) Non-uniformly placed Steiner points, and (b) an approximate path near a vertex
u.

points on e. Aleksandrov et al. solved this problem by placing no Steiner points near u. More
precisely, they place no Steiner points in the ball of radius ǫh centered at u, where h is the
smallest 2D height of a triangle. As a result, the number of Steiner points on an edge becomes
O(log1+ǫ sin φ(L/(ǫh))), where L is the length of the longest edge of the terrain. Note that every
edge has two such sets of Steiner points, one set for each of the endpoints. Although there
are no Steiner points near u, the small radius of the ball centered at u allows approximating
a sequence of segments close to u with a sequence of two segments through u, as shown in
Figure 2.5(b). In this figure, the dotted arrows form an approximation of the path drawn with
solid arrows. Note that the “short detour through u” shown in the figure can be arbitrarily
longer than the corresponding part of the shortest path. However, the part of the shortest
path that lies before the ball at u and outside any other balls is longer than (1 − 2ǫ)h, which
bounds the approximation ratio of the whole path. In the weighted case, the approximation
ratio becomes 1 + 2ǫ + 2Wǫ

(1−2ǫ)w , where W and w are respectively the largest and the smallest
weight. We are unable to verify their error analysis because their approach of approximating
a segment very close to a vertex (in Claim 3.22) seems to guarantee a 2-approximation rather
than a (1 + ǫ)-approximation.

The above scheme takes O(nm log nm+nm2) time to compute a (1+ǫ)-approximate shortest
path, where m = log1+ǫ sin φ(L/(ǫh)). Aleksandrov et al. claim that they can compute a (1+ǫ)-
approximate shortest path in O(nm log nm) time by first reducing the size of the graph used
in the first scheme by eliminating certain edges. More precisely, if p is a Steiner point on edge
e1, and q1, q2 and q3 are Steiner points on a different edge e2 of a common face such that
|pq1| ≤ |pq2| ≤ |pq3|, then the new graph does not contain the edge pq2 if |q1q3| ≤ ǫ|pq1|. This
idea seems similar to the one used by Papadimitriou [76], but Aleksandrov et al. do not provide
details on how they reduce the size of the graph in O(nm log nm) time. Ignoring geometric
parameters, the running time of their algorithm can be simplified to O(n

ǫ2
log n log 1

ǫ) [15].

Aleksandrov, Maheshwari and Sack [14]

Aleksandrov, Maheshwari and Sack [14] try to improve the above algorithm by using a modified
version of Dijkstra’s algorithm. Unlike the paper by Aleksandrov et al. [13] in which the
shortest path tree in the graph is constructed blindly, i.e., without considering any geometry,
this approach considers Snell’s law at every step of expanding the shortest path tree. When

14

generating the children of a Steiner point p in the tree, only the Steiner points (across the next
face) that lie in a small cone defined by Snell’s law are considered. More precisely, let p0p be
the last segment of the path to p, and pq0 be a segment in the next face for which the path
obeys Snell’s law at p (Figure 2.6). A Steiner point q is considered as a possible child of p in
the shortest path tree if ∠qpq0 ≤ δ, where

δ =

(

1 +

√

πw1

2w2

)

π
√

ǫ ,

and w1 and w2 are the weights of the faces containing p0p and pq0 respectively. The running
time of the algorithm is O(n

ǫ log 1
ǫ (

1√
ǫ
+ log n)) ignoring geometric parameters. This approach

appears to suffer from the same issue as the previous one regarding segments very close to
vertices.

s

δ

δ

q

q0

p
p0

w1

w2

Figure 2.6: Utilizing Snell’s law with approximate paths.

The Bushwhack algorithm of Sun and Reif [92]

Sun and Reif [92] use a discrete search algorithm, called Bushwhack [90], which modifies Di-
jkstra’s algorithm for graphs representing approximate shortest paths on terrains. The Bush-
whack algorithm improves the running time of Dijkstra’s algorithm from O(|V | log |V | + |E|)
to O(|V | log |V |) by utilizing certain geometric properties of the shortest paths in such a graph.
Sun and Reif fill in the missing details in Aleksandrov, Maheshwari and Sack [14], and then
apply the Bushwhack algorithm to devise a faster approximation algorithm for the weighted
region problem, with running time O(n

ǫ log n
ǫ log 1

ǫ).

The Bushwhack algorithm has been used in other terrain shortest path algorithms, including
our algorithms in Chapters 4 and 5. We will therefore explain this algorithm briefly.

The Buskwhack algorithm relies on a simple, yet important, property of shortest paths on
terrains: two shortest paths through different face sequences do not intersect each other at an
interior point of a face. As a result, for any two consecutive Steiner points u1 and u2 on edge
e for which the distances from s are already known, the corresponding sets of “possible next
nodes on the path” are disjoint, as shown using shading in Figure 2.7(a). This property makes
it possible to consider only a subset of links at a Steiner point v when expanding the shortest
path tree onwards from v using Dijkstra’s algorithm. More precisely, Sun and Reif maintain a
dynamic list of intervals Ie,e′ for every pair of edges e and e′ of a common face. Each point in an
interval is reachable from s using a shortest path through a common sequence of intermediate

15

e

e′

s

u1u2u3u4

(a)

e

e′

s

u1u2u3u4

(b)

e

e′

s

u1u2u3u4

(c)

Figure 2.7: Maintaining the list Ie,e′ in the Bushwhack algorithm.

points. For every Steiner point v in e with known distance from s, Ie,e′ contains an interval
of Steiner points on e′ that are likely to become the next node in the path from s through v.
The intervals in Ie,e′ are ordered in accordance with the ordering of the Steiner points v on e,
which enables easy insertion of the interval for a Steiner point on e whose distance from s is
yet unknown. For example, right after the distance of u4 from s becomes known (i.e., right
after u4 gets dequeued in Dijkstra’s algorithm) as shown in Figure 2.7(b), the Steiner points
on e′ that are closer to u4 than to any other Steiner points on e with known distances from s
can be located in time logarithmic in the number of Steiner points on e′, using binary searches
(Figure 2.7(c)). Within the interval for each Steiner point u ∈ e, only the Steiner point that is
the nearest one from u is enqueued. Since the nearest Steiner point from u in its interval can
be determined in constant time, each iteration of the modified Dijkstra’s algorithm (i.e., the
Bushwhack algorithm) takes O(|V |) time, resulting in a total running time of O(|V | log |V |).
(Note that “traditional” Dijkstra’s algorithm completes each loop in O(d(v) + log |V |) time,
where d(v) is the degree of a vertex v.)

The intervals used by Sun and Reif are analogous to the intervals used in the continuous
Dijkstra approach (discussed in Section 2.2). In both cases, an interval consists of points to
which the shortest paths have the same combinatorial structure. The main difference is that
the intervals used by Sun and Reif consist of discrete points, each of which is reachable from
s using a shortest path through a common sequence of intermediate points while the intervals
used in the continuous Dijkstra approach consist of a continuous range of points, each of which
is reachable from s using a shortest path crossing a common sequence of edges.

Aleksandrov, Maheshwari and Sack [15]

Unlike all the previous Steiner point approaches for the weighted region problem, all of which
place the Steiner points along the edges of the terrain, Aleksandrov, Maheshwari and Sack [15]
place them along the bisectors of the face angles. Each link in graph G connects a pair of
Steiner points p and q that lie on the bisectors of two face angles sharing a common edge e.
The weight of the link connecting p and q is the weighted length of the shortest path from p to
q that intersects e. The shortest path can have one of the following two forms. If p and q lie
on two different faces with weights w1 and w2 respectively as shown in Figure 2.8(a), the path
intersects e at a point x for which w1 sinψ1 = w2 sin ψ2. On the other hand, if both p and q lie
a common face of weight w1, and the other face adjacent to e has weight w2 < w1 as shown in

16

Figure 2.8(b), the path intersects e at a segment xy for which sinψ1 = sinψ2 = w2

w1
. Each of

these paths can be determined in constant time. As in the paper by Aleksandrov, Maheshwari
and Sack [14], the Steiner points are placed in a geometric progression, and no Steiner point is
placed close to a vertex.

ψ2

p

q

w2

w1

e x

ψ1

(a)

p

w2

w1

e

q
ψ1 ψ2

yx

(b)

Figure 2.8: Links between the Steiner points along two bisectors.

As in the previous approaches, a shortest path in graph G is a (1 + ǫ)-approximation of
a shortest path in the terrain. Applying the Bushwhack algorithm, a shortest path in G is
determined in O(n√

ǫ
log n

ǫ log 1
ǫ) time.

2.3.2 The shortest anisotropic path problem

The shortest anisotropic path problem is a generalization of the weighted region problem. In
this problem, the goal is to minimize the weighted length of a path on a triangulated terrain,
where the weight of a path segment ab depends both on the face containing ab and the direction
of ab. In other words, the weight in a region is expressed as a function of the direction of travel.

The shortest anisotropic path problem has many practical applications, such as finding an
energy-minimizing path for a robot [91], and minimizing travel time in presence of flows [80].

Neither a polynomial time algorithm nor a hardness proof is known for the shortest aniso-
tropic path problem. In Chapters 3 to 5 of this thesis we will examine two special cases of this
problem. Previous results on shortest anisotropic paths fail to solve our special cases because
those results are based on two restricted anisotropic weight models, and neither of these models
apply to our problems. Now we will discuss these two weight models, and mention how the
Steiner point approach mentioned in Section 2.2.3 has been used for these models.

The anisotropic weight model of Rowe and Ross [81]

Rowe and Ross [81] introduced the shortest anisotropic path problem, and studied a model of
weights that captures the effect of gravity and friction on a vehicle moving on a polyhedral
terrain. We will briefly discuss various components of this model.

17

direction
travel

gravity

friction

(a)

Overturn
range

Overturn
range

Braking
range

range
Impermissible

s

t

(b)

Figure 2.9: The model of Rowe and Ross for shortest anisotropic paths.

The effect of gravity on a vehicle moving on a non-level face depends on the direction of
travel. For example, if the vehicle is moving upward [downward] in a face, gravity opposes
[respectively supports] its motion (Figure 2.9(a)). The force of kinetic friction, on the other
hand, always opposes the motion. As a result, depending on the slope of the face, a range of
upward directions may be too steep for the vehicle, while a range of downward directions may
necessitate braking to limit the speed of the vehicle. Similarly, a range of sideways direction
may cause the vehicle to overturn. Based on such physical effects, the model of Rowe and Ross
divides all the directions of travel into eight regions as shown in Figure 2.9(b). The shaded
regions in the figure mark the forbidden directions. Each direction along a boundary of a region
is called a critical direction of that region. Note that in this model the direction-dependent
weight function in a face f is a constant function iff f is a level face.

The model assumes that any point in a forbidden direction can be reached by following a
zigzag path switching between two critical directions, as shown by the dashed path from s to
t in Figure 2.9(b). This is possible only when the angle between the two critical directions for
any forbidden range is below π radians.

There are three papers [64, 89, 91] that address the shortest anisotropic path problem in
this model. These papers present algorithms based on the Steiner point approach. There is
one crucial property that shortest paths in the weighted region problem have, but shortest
anisotropic paths do not have. A shortest path in the weighted region problem can come close
to a given vertex only once—this follows from the characterization of bend angles in Mitchell
and Papadimitriou [71]. However, a shortest anisotropic path may come close to a given vertex
many times. We will give in Figure 4.2 an example of an SDP that shows this behavior. A
similar shortest anisotropic path in the model of Rowe and Ross can be constructed when, for
example, the angle defining the “impermissible range” in Figure 2.9(b) is very close to π, and
the angles defining the “overturn ranges” are very close to zero. The analysis of approximation
algorithms for the weighted region problem depends crucially on this property because the error
close to a vertex is amortized against the “long” subpath leading to this vertex. This analysis
fails for shortest anisotropic paths because repeated visits close to the same vertex need not
be separated by long paths. We do not see how this is remedied in the above three papers on

18

shortest anisotropic paths. For our algorithms in Chapters 4 and 5, we analyze errors using a
different argument.

Sun and Reif [91, Section V] relaxed the assumption in the model of Ross and Rowe (that
any point in a forbidden direction can be reached by following a zigzag path), but they did so
only in isolated faces. If we instead relax the assumption in any two adjacent faces f1 and f2,
their approach can make the number of Steiner points in those faces exponentially large. This
is because they place Steiner points in two phases, and every Steiner point placed in the edge
f1 ∩ f2 in the second phase for face f1 [f2] will generate more second phase Steiner points in
f2 [respectively f1] (see Figure 11 in Sun and Reif [91]).

The anisotropic weight model of Cheng et al. [31]

Cheng et al. [31] introduced another anisotropic weight model which assumes that the (aniso-
tropic) weight associated with a direction of travel is bounded by constants from both above
and below. More precisely, they assume that there exists a constant ρ ≥ 1 such that the weight
in any direction lies in the interval [1, ρ]. They also assume a “convexity” property of the
reciprocal of the direction-dependent weight function. The latter assumption makes a zigzag
path in a face non-optimal. This is a more restricted model than the one by Rowe and Ross
because, for example, forbidden directions are not allowed in this model. Another limitation
of Cheng et al. is that their algorithm works only in 2D, i.e., on a subdivision of the plane, and
cannot be used for a general terrain.

The algorithm of Cheng et al. is based on the Steiner point approach. The positions of
the Steiner points are determined in a completely new way: the Steiner points are more dense
in the part of the terrain close to both source s and destination t, and they become sparser
in the part far away. More precisely, Cheng et al. first partition the terrain by “cutting” it
along a set of ellipses each of which has s and t at its focal points. The bounds on direction-
dependent weights play an important role in determining the shapes of the ellipses. Then for
each partition, Cheng et al. place Steiner points uniformly along all the edges lying in that
partition. The distance between consecutive Steiner points in a partition depends on how far
the partition is from s and t—a nearer partition gets more Steiner points than the one further
away.

Another paper by the same authors [30] presents a data structure that allows preprocessing
the terrain in such a way that a (1+ǫ)-approximate shortest anisotropic path can be computed
in time linear in the size of the path.

19

Chapter 3

Shortest Descending Paths:

Towards an Exact Algorithm

3.1 Introduction

Polynomial time algorithms are known for many geometric shortest path problems. In the
plane, a shortest path among polygonal obstacles can be found using the continuous Dijkstra
approach [70] where a wavefront expands over the surface from the source, deflecting around
obstacles. The analogous problem in 3D is NP-hard [24], but the special case where the path
must lie on a polyhedral surface is amenable to the same continuous Dijkstra approach, or to
the sequence tree approach of Chen and Han [28], which grows shortest paths by unfolding the
surface face by face, still in breadth-first order but not necessarily in path-length order. The
excellent survey by Mitchell [69] discusses these and other shortest path problems. One variant
of the continuous Dijkstra approach that has received recent attention utilizes a quad-tree like
subdivision of the plane to achieve faster running time [55]. Schreiber and Sharir [87] have
extended this variant for a 3D convex surface, which has later been applied to several realistic
scenarios [86].

This chapter is about a variant of the shortest path problem for which no exact algorithm
is known, the shortest descending path (SDP) problem: given a polyhedral terrain, and points
s and t on the surface, find a shortest path on the surface from s to t such that, as a point
travels along the path, its elevation, or z-coordinate, never increases. We need to compute a
shortest descending path, for example, for laying a canal of minimum length from the source of
water at the top of a mountain to fields for irrigation purpose, and for skiing down a mountain
along a shortest route [9, 84].

The SDP problem was introduced by de Berg and van Kreveld [37], who gave an algorithm
to preprocess a terrain in O(n log n) time and in O(n) space so that it can be decided in
O(log n) time if there exists a descending path between any pair of vertices. They did not
consider the length of the path, and left open the problem of finding the shortest such path. In
a subsequent paper, Roy, Das and Nandy [83, 84] studied the problem in two restricted settings.
For convex (or concave) terrains, they use the continuous Dijkstra approach [70] to preprocess
the terrain in O(n2 log n) time and O(n2) space so that an SDP of size k can be determined

20

in O(k + log n) time. For a terrain consisting of edges parallel to one another, they find an
SDP in O(n log n) time by transforming selected faces of the terrain in a way that makes the
unfolded SDP a straight line segment. Roy [82] later improved this running time to O(n), by
replacing a sorting step in the previous algorithm with a divide-and-conquer technique. The
SDP problem on general terrains has been addressed by Ahmed et al. [4]. The paper gives
approximation schemes using the Steiner point approach—we will discuss them in Chapter 4.
All these papers on the SDP problem provided very little insight on the “structure” of SDPs in
a general terrain, and it remained a mystery why the problem is so easy for two special classes
of terrain yet unsolved for the general case. In this chapter we explore the deeper structure of
SDPs.

A main property of (unconstrained) shortest paths on terrains is that they unfold to straight
lines. This makes two sub-problems trivial: (1) to extend a shortest path from one face into
an adjacent face; and (2) to find a shortest path to a specified target point given the sequence
of faces that the path traverses. Our first main result is an efficient algorithm to solve sub-
problem (1) for SDPs. This is non-trivial because SDPs do not unfold to straight lines. We
give a full characterization of the bend angles of an SDP, showing that the bend angles follow
a generalized form of Snell’s law of refraction of light. Our second main result is an adaptation
of the sequence tree approach of Chen and Han (discussed in Section 2.2.2) to SDPs. This
requires efficient solutions to sub-problems (1) and (2) plus a structural result that permits
the sequence tree to be pruned. We prove the structural result for SDPs, so the only missing
ingredient is an efficient solution to sub-problem (2). In other words, we reduce the SDP
problem in polynomial time to sub-problem (2). Our results have two implications. First, we
isolate the difficult aspect of SDPs. The difficulty is not in deciding which face sequence to use,
but in finding the SDP through a given face sequence. This involves numerical issues similar to
the ones faced by Mitchell and Papadimitriou while computing shortest paths in the weighted
region problem [71, Section 8]. Secondly, our results help us identify some classes of terrains
for which the SDP problem is solvable in polynomial time. We give algorithms for two such
classes.1

The chapter is organized as follows. We define relevant terms in Section 3.2. We establish in
Section 3.3 some properties of SDPs that lead to a complete characterization of the bend angles
of an SDP. We also present in this section two approximation algorithms to find SDPs through
given faces, one based on convex programming, and the other based on our full characterization
of the bend angles and binary search. In Section 3.4 we adapt the sequence tree approach of
Chen and Han for the SDP problem, and reduce the SDP problem to the case of a known
face sequence. We give polynomial time algorithms for two classes of terrains in Section 3.5.
Finally we conclude in Section 3.6 with a discussion on numerical issues with SDPs in general
terrains.

3.2 Terminology

For any point p in the terrain, we use h(p) to denote the height of p, i.e., the z-coordinate of
p. A line or face in 3D is called level if all points on that line or face have the same height.

1A part of Section 3.3 appeared in Ahmed and Lubiw [9], and in a preliminary form earlier in Ahmed and
Lubiw [5]. A preliminary version of the rest of this chapter was presented in FWCG 2007 [7].

21

A path P from s to t on the terrain is descending if the z-coordinate of a point p never
increases while we move p along the path from s to t. A line segment of a descending path
in face f is called a free segment if moving either of its endpoints by an arbitrarily small
amount to a new position in f keeps the segment descending. Otherwise, the segment is called
a constrained segment. All the points in a constrained segment are at the same height, though
not all constant height segments are constrained. For example, a segment in a level face is free,
although all its points are at the same height. Clearly, a constrained segment can only appear
in a non-level face, and it is parallel to a level line in that face. A path consisting solely of free
[constrained] segments is called a free path [respectively constrained path]. For any point p, we
call the path (p, p) a trivial constrained path.

We use the following convention throughout this chapter. The term “edge” denotes an
edge of a (triangular) terrain face, and the term “segment” denotes a line segment of a path.
Similarly, an endpoint of an edge is called a “vertex”, while an endpoint of a segment is called
a “node”. In Section 3.4 we use “node” and “link” to denote the corresponding entities in a
tree. We assume that all paths in our discussion are directed unless stated otherwise.

We now define a locally shortest descending path (LSDP), which is analogous to a geodesic
path (i.e., a locally shortest path) [70]. An LSDP between two nodes is a descending path that
cannot be shortened by slight perturbation of the intermediate nodes. Note that perturbing
a single node in a descending path may make the path infeasible (i.e., not descending), and
hence, we allow more than one node to be perturbed simultaneously. For example, if we change
the height of a node p from h1 to h2 > h1, all the points before p on the path must be moved to
height at least h2 to keep the path descending. Also note that a constrained path is an LSDP.

We prove in Section 3.3.2 the uniqueness of an LSDP through a given sequence of faces—a
property that is used throughout the chapter. The proof relies on a certain function being
strictly convex, which is defined as follows [22, Section 3.1.1]:

Definition 3.1 (Convexity and Strict convexity of a function). A function f : R
n → R is called

convex if the domain of f is a convex set, and for all x, y in that domain and all c ∈ [0, 1],

f(cx + (1 − c)y) ≤ cf(x) + (1 − c)f(y) . (3.1)

The function f is called strictly convex if strict inequality holds in Equation 3.1 whenever
x 6= y and 0 < c < 1.

The conventions used in the figures to mark various components related to a descending
path are shown in Figure 3.1. In particular, an arrow with a solid, dark arrowhead denotes a
path segment, and the arrow may be heavy to mark a level segment. In the figures where the
direction of the edges are important, we again use arrows to mark the upward direction, but
we make the arrowheads V-shaped (“open”) in this case to differentiate the edges from the
segments. Dotted lines are used to show level lines in a non-level face. The figures with face
sequences show the faces after unfolding them onto a common plane.

3.3 Characteristics of a shortest descending path

In this section we discuss various characteristics of shortest descending paths (SDPs) and locally
shortest descending paths (LSDPs). Our goal is to characterize the bend angles of an LSDP

22

Free segment

Constrained segment

Edge with upward direction

Level line in a face

Any other line segment
t

s

Figure 3.1: General legend for all figures in this section.

that does not go through any vertex of the terrain. This characterization gives us the ability
to trace an LSDP onward through the terrain from a given ray leaving s. Unlike the case of
a geodesic path [70], tracing an LSDP in this manner is a non-trivial task because, as we will
soon see, an unfolded LSDP is not necessarily a straight line segment.

Throughout this section, we will use σ = (f0, f1, . . . , fk) to denote a sequence of faces used
by an LSDP from s ∈ f0 − f1 to t ∈ fk − fk−1. For each i ∈ [1, k], fi−1 and fi share an
edge; let the edge fi−1 ∩ fi be aibi with h(ai) ≥ h(bi). (Note that σ can also be defined as
the edge sequence (a1b1, a2b2, . . . , akbk).) Our discussion below considers this problem as a 2D
problem, because by unfolding each pair of consecutive faces in the sequence appropriately, we
can “align” all the faces in the sequence onto a plane, as is usually done for paths on polyhedral
surfaces. There is an obvious one-to-one correspondence between points in this unfolded face
sequence and on the original terrain. In order to avoid an extra layer of notation, we will, for
point p in the unfolded face sequence, still use h(p) to refer to the height of the corresponding
point on the original terrain. Similarly, when we say that a line in the unfolded face sequence
is level, we mean it has constant height on the original terrain.

3.3.1 Similarities with a geodesic path

An LSDP and a geodesic path over a terrain are similar in many respects. The following
lemmas establish two properties of an LSDP that make an LSDP analogous to a geodesic path:

Lemma 3.1. Any subpath of an LSDP is an LSDP.

Proof. If a subpath P1 of an LSDP P is not locally shortest, there exists an LSDP P ′
1 corre-

sponding to P1 such that the length of P ′
1 is less than that of P1. In that case, we can modify

P by replacing the subpath P1 with P ′
1 and get an LSDP of length less than that of P . This

leads to a contradiction.

23

Lemma 3.2. An LSDP consists of straight line segments, and bends only at the edges of the
terrain.

Proof. Suppose that an LSDP P bends at point p that is an interior point of some face f of
the terrain. Let P1 be the connected subpath of P ∩ f that contains p, and p1 and p2 be
respectively the starting and ending points of P1. Since P is a descending path, h(p1) ≥ h(p2).
Therefore, the line segment from p1 to p2 is a descending path, and its length is less than that
of P1 because P1 bends at p. That means, P1 is not an LSDP. Then, by Lemma 3.1, P is not
an LSDP, which is a contradiction.

t

s

Figure 3.2: An LSDP visiting a face twice.

As in the case of a geodesic path [70], an LSDP may visit a single face more than once. For
example, a string tightly wrapped around a pyramid as shown in Figure 3.2 is an LSDP from
s to t, and it visits a face twice. However, like a shortest path, an SDP visits a face at most
once. The following lemma proves this claim (Roy, Das and Nandy [84, Lemma 2] also prove
the claim).

Lemma 3.3. The intersection of an SDP P with a face of the terrain is either empty or a line
segment.

Proof. If P doesn’t visit face f , then P ∩ f is empty. Otherwise, let p1 and p2 be the first and
the last points of P in P ∩ f . Then, h(p1) ≥ h(p2), and hence, the line segment from p1 to
p2 is a descending path. If the part of P from p1 to p2 is not a line segment, replacing that
part of P with the line segment p1p2 makes a descending path of shorter length, which is a
contradiction.

One important difference between an LSDP and a geodesic path is that unlike a geodesic
path [70], two consecutive segments of an LSDP through an edge ab do not always become
a straight line segment when the two faces of the terrain adjacent to ab are unfolded onto a
plane. Before proving this claim, we define two angles at every edge intersected by an LSDP
to quantify the angles at the bends along an LSDP.

Definition 3.2 (Entering and Exiting angles). Let P = (p, q, r) be a path from an interior
point p in face f1 to an interior point r in face f2 adjacent to f1 such that P crosses edge
ab = f1 ∩ f2 at q where h(a) ≥ h(b) (Figure 3.3). Let p′ ∈ f1 and q′ ∈ f2 be two points such
that both p′q and qr′ are perpendicular to ab at q. (Thus p′qr′ becomes a straight line segment

24

r′q
βp′

α

a

bp

r

f1 f2

Figure 3.3: Entering and exiting angles.

after f1 and f2 are unfolded to lie in a plane.) The angle ∠pqp′ is called the entering angle of
P at ab, and is considered positive if and only if p and b are on the same side of line p′q. The
angle ∠rqr′ is called the exiting angle of P at ab, and is considered positive if and only if r
and a are on the same side of line qr′.

In Figure 3.3, α and β are respectively the entering angle and the exiting angle of P at ab.
In case ab is level, i.e., h(a) = h(b), exchanging the labels a and b reverses the signs of both
angles; our discussion is valid for any of these labeling choices.

Before discussing how an LSDP bends at its intermediate nodes, we observe the fact that
any path consisting of two non-collinear line segments can be made shorter by perturbing the
intermediate node of the path. More precisely:

Observation 3.1. Let pq and qr be two non-collinear line segments, and q′ be a point inside the
smaller angle made by the two segments at q. If q′ is inside △pqr, then |pq′|+ |q′r| < |pq|+ |qr|.

Proof. Let q′′ be the intersection point of the lines pq′ and qr (Figure 3.4). Since q′ lies inside
△pqr, |pq′| + |q′r| < |pq′| + |q′q′′| + |q′′r| = |pq′′| + |q′′r| < |pq| + |qq′′| + |q′′r| = |pq| + |qr|.

r
q′

q

p

q′′

Figure 3.4: Proving that |pq′| + |q′r| < |pq| + |qr| for any q′ is inside △pqr.

Using the above observation, Lemma 3.4 below proves the claim that an unfolded LSDP is
not always a straight line segment:

Lemma 3.4. The descending path P = (p, q, r) is an LSDP if and only if one of the following
holds:

(i) α = β;

(ii) α > β, and qr is constrained; or

25

(iii) α < β, and pq is constrained.

Proof. ⇐:

(i) If α = β, then for any point q′ ∈ ab such that q′ 6= q, the length of the path (p, q′, r) is
more than that of P . Therefore, P is an LSDP.

(ii) If α > β, and qr is constrained, then for any point q′ ∈ ab such that h(q′) > h(q), q lies
inside △pq′r (Figure 3.5(a)). By Observation 3.1, the length of the path (p, q′, r) is more
than that of P . On the other hand, for any point q′ ∈ ab such that h(q′) < h(q), (p, q′, r)
is not a descending path because h(r) = h(q) > h(q′). Therefore, P is an LSDP.

(iii) If α < β, and pq is constrained, the proof is similar to the one for Case (ii), except that
the path (p, q′, r) is longer than P when h(q′) < h(q), and is infeasible when h(q′) > h(q).

a

b

r

q′
β

α

p

q

(a)

a

b

r

q′
β

α
p

q

(b)

Figure 3.5: Showing that an unfolded LSDP is not a straight line segment.

⇒: It is sufficient to show that if either α < β and pq is free, or α > β and qr is free, P is not
an LSDP.

If α < β and pq is free, let q′ be a point on ab slightly above q, but with h(q′) ≤ h(p)
(Figure 3.5(b)). Such a point q′ always exists because pq is a free segment and we can make
q′ arbitrarily close to q. We form a new path P ′ = (p, q′, r). When q′ is very close to q, q′

lies inside △pqr, and the length of P ′ is smaller than that of P by Observation 3.1. Because
qr is descending, the segment q′r is also descending. The segment pq′ is descending since
h(q′) ≤ h(p). Therefore, P ′ is a descending path, and is shorter than P . So, P is not an LSDP.
We can similarly show that P is not an LSDP if α > β and qr is free.

We can intuitively say that P can deflect downward if qr is constrained, and can deflect
upward if pq is constrained. When ab is a level edge, this intuition may seem meaningless
because “upward” and “downward” do not make any sense in this case. However, since a
constrained segment does not intersect a level edge, P is a free path in this case and therefore
must go straight (i.e., α = β). The intuition thus holds in all cases.

26

Roy, Das and Nandy [83, Lemma 1] proved that an SDP does not bend downwards in a
convex terrain. This property follows immediately from Lemma 3.4 because in such a terrain
the angle formed by the level lines of f1 and f2 at q that contains a is at most π.

In spite of all the similarities between an LSDP and a geodesic path, an SDP and a shortest
path can be very different from each other. The following lemma proves this claim.

Lemma 3.5. Let PT and P ′
T denote respectively an SDP and a shortest path from s to t in

terrain T . There exists a terrain T for which one (or more) of the following holds: (i) the
ratio of the lengths of PT and P ′

T is arbitrarily large even when the paths pass through the same
sequence of faces; (ii) PT and P ′

T pass through two different face sequences; and (iii) there is
no descending path through the face sequence crossed by P ′

T .

Proof. The idea is that a shortest path may climb over a ridge while the SDP may need to
travel a long way around. We use a slightly more elaborate example to capture all the given
situations. Consider a polyhedron that has a perspective view and a top view as in Figure 3.6.
Let s and t be two points of equal heights, and P be the constrained path (s, p1, p2, p3, t), as
shown in the figure.

s

t

q1

q′1

p1
p2

p3

p′2

(a)

s

q1

q2

t

p1

p3

p2p′2

(b)

Figure 3.6: A terrain in which an SDP is very different from a shortest path.

Let T1 be the terrain consisting of the faces crossed by P , and (s, p1, p
′
2, p3, t) be the shortest

path in T1. Clearly, (s, p1, p2, p3, t) is an SDP in T1. Moreover, p1p
′
2 ⊥ p2p

′
2 (and p3p

′
2 ⊥ p2p

′
2

by symmetry). Now imagine rotating T1 around the axis defined by the line through s and
t. This rotation keeps the length of (s, p1, p

′
2, p3, t) unchanged, but changes the length of

(s, p1, p2, p3, t). If we rotate T1 until the face adjacent to s becomes almost horizontal, the
length of (s, p1, p2, p3, t) becomes arbitrarily large. This proves the first part of the lemma.

Let T2 be the terrain consisting of the faces visible in the top view in Figure 3.6. It is
not hard to see that from s to t there are exactly two LSDPs (s, p1, p2, p3, t) and (s, q1, q2, t),
and exactly two geodesic paths (s, p1, p

′
2, p3, t) and (s, q′1, q

′
2, t) in T2. In the figure, the path

(s, p1, p
′
2, p3, t) is shorter than the path (s, q′1, q

′
2, t). So, (s, p1, p

′
2, p3, t) is the shortest path from

s to t. We can make the length of (s, p1, p2, p3, t) greater than that of (s, q1, q2, t) by rotating
the faces crossed by (s, p1, p2, p3, t) as in the first part of the proof, while keeping the slopes
of other faces unchanged. This makes (s, q1, q2, t) an SDP in T2. Clearly, the SDP and the
shortest path in T2 pass through disjoint sets of faces, which proves the second part.

27

If we modify T2 by removing the part of it to the right of the dashed lines in Figure 3.6(b),
it is no longer possible to construct any descending path through the face sequence crossed by
the shortest path (s, p1, p

′
2, p3, t). This proves the third part.

Roy, Das and Nandy [83, Section 5] suggest a heuristic for tracing an approximate SDP P
from s to t, which follows a shortest path P ′ until reaching a point where P ′ is not descending,
and follows constrained segments from that point until the traced path P either reaches t, or
reunites with P ′ in which case P starts following P ′ again. They point out in their conclusion
that the efficacy of this method depends on whether there is any relationship between the
length of an SDP and the length of a descending path through the face sequence of a shortest
path. Lemma 3.5 answers this negatively.

3.3.2 Uniqueness of an SDP through given faces

Our goal in the rest of Section 3.3 is to determine a necessary and sufficient condition for an
LSDP through σ from s to t. The first step towards our goal is to show the uniqueness of an
LSDP through σ from s to t, which is the topic of this section. The uniqueness of a geodesic
path is evident from the fact that an unfolded geodesic path is a straight line segment. Since
an unfolded LSDP is not a straight line segment, the uniqueness of an LSDP is not obvious.
We prove this property by formulating the problem of computing an LSDP through σ as a
convex optimization problem.

q1 q2

p1 p2
s

t

Figure 3.7: Two descending paths that follow Lemma 3.4, but of different lengths.

Note that the properties of LSDPs that we have mentioned so far do not imply the unique-
ness of an LSDP through σ from s to t. In particular, even though Lemma 3.4 gives necessary
and sufficient condition for an LSDP that crosses only one edge of the terrain, the condition
is not sufficient for an LSDP that crosses at least two edges of the terrain. This is because
Lemma 3.4 determines only the direction of deflection at an intermediate node of an LSDP, not
the amount of deflection. It is possible to construct two descending paths of different lengths
through a common face sequence such that both paths follow Lemma 3.4 at each intermediate
node. Figure 3.7 shows two such paths, where it is not hard to see that (s, q1, q2, t) is longer
than (s, p1, p2, t).

We now go into the details of our uniqueness proof. We will start with a general path from
s to t in 3D such that the ith intermediate node of the path lies on the line through aibi (thus
the path does not necessarily lie on the terrain). More precisely, let F (x1, x2, . . . , xk) denote
the general path consisting of the line segments sp1, p1p2, p2p3, . . . , pk−1pk and pkt in this
order, where for all i ∈ [1, k], pi is any point on the line through aibi, and xi is a parameter
to denote the position of pi on line aibi. For all i ∈ [1, k] such that aibi is non-horizontal, the

28

height of pi uniquely determines its position. So, in these cases, we use the height of pi as
parameter xi. For each horizontal edge aibi, we use as parameter xi the signed distance of pi

from bi. More precisely, xi =
−→
bipi · −−→biai/|aibi| in this case.

Note that parameter xi can be defined in many ways, and our results below remain un-
changed as long as xi varies linearly with the position of pi. However, choosing the height
of pi as our parameter xi for non-horizontal edges makes the proof of Lemma 3.7 simple and
intuitive, because the constraint that the path is descending is simply expressed as xi ≥ xi+1.
This is why we have chosen to define xi in this manner.

Let L(x1, x2, . . . , xk) denote the length of the path F (x1, x2, . . . , xk). In other words,
L(x1, x2, . . . , xk) =

∑k
i=0 |pipi+1|, where p0 = s and pk+1 = t. The core of our uniqueness

proof is the following property of L(x1, x2, . . . , xk):

Lemma 3.6. L(x1, x2, . . . , xk) is a strictly convex function.

A similar result was proved by Mitchell and Papadimitriou [71, Lemma 3.6] for the case
of the weighted region problem. We include a proof for completeness and in order to be
meticulous about faces where the function is convex but not strictly so. More precisely, our
proof shows that |pipi+1| is not a strictly convex function of xi and xi+1 for any i ∈ [1, k − 1],
yet L(x1, x2, . . . , xk) is a strictly convex function.

Proof. Let (u1, u2, . . . , uk) and (v1, v2, . . . , vk) be two lists of constants such that ui 6= vi for at
least one i ∈ [1, k]. For any real constant κ ∈ (0, 1), let wi = κui + (1 − κ)vi for all i ∈ [1, k].
We show that

L(w1, w2, . . . , wk) < κL(u1, u2, . . . , uk) + (1 − κ)L(v1, v2, . . . , vk),

which proves the lemma by the definition of strict convexity (Definition 3.1).

pi+1

ri+1

qi+1

qi

pi

ri

Figure 3.8: Proving strict convexity of L(x1, x2, . . . , xk).

Clearly, F (u1, u2, . . . , uk) and F (v1, v2, . . . , vk) denote two different paths. Let the ith
segments of the three paths F (u1, u2, . . . , uk), F (v1, v2, . . . , vk) and F (w1, w2, . . . , wk) be pipi+1,
qiqi+1 and riri+1 respectively (Figure 3.8). We can express the coordinates of ri in terms of
those of pi and qi as follows:

ri = κpi + (1 − κ)qi.

Therefore,

−−→ripi = pi − ri = pi − κpi − (1 − κ)qi = (1 − κ)(pi − qi) = (1 − κ)−−→qipi,

29

and similarly, −→riqi = κ−−→piqi. So, κ−−→ripi + (1− κ)−→riqi = 0. For the same reason, κ−−−−−→pi+1ri+1 + (1−
κ)−−−−−→qi+1ri+1 = 0. Using these two equations, we can express −−−→riri+1 in terms of −−−→pipi+1 and −−−→qiqi+1

as follows:

−−−→riri+1 = κ−−−→riri+1 + (1 − κ)−−−→riri+1

= κ (−−→ripi + −−−→pipi+1 + −−−−−→pi+1ri+1) + (1 − κ) (−→riqi + −−−→qiqi+1 + −−−−−→qi+1ri+1)

= κ−−−→pipi+1 + (1 − κ)−−−→qiqi+1 +

κ−−→ripi + (1 − κ)−→riqi + κ−−−−−→pi+1ri+1 + (1 − κ)−−−−−→qi+1ri+1

= κ−−−→pipi+1 + (1 − κ)−−−→qiqi+1.

Taking the lengths of −−−→riri+1, −−−→pipi+1 and −−−→qiqi+1, we get

|riri+1| ≤ κ|pipi+1| + (1 − κ)|qiqi+1|. (3.2)

In Equation (3.2), the equality holds only when pipi+1 and qiqi+1 are parallel to each other.
Because F (u1, u2, . . . , uk) and F (v1, v2, . . . , vk) are different paths, and they both start at s
and end at t, there are at least two i ∈ [0, k] for which pipi+1 and qiqi+1 are not parallel to
each other. Considering this fact, and adding the lengths in Equation (3.2) over all i ∈ [0, k],
we get:

k
∑

i=0

|riri+1| < κ
k

∑

i=0

|pipi+1| + (1 − κ)
k

∑

i=0

|qiqi+1|

⇒ L(w1, w2, . . . , wk) < κL(u1, u2, . . . , uk) + (1 − κ)L(v1, v2, . . . , vk),

which completes the proof.

We now determine the constraints on the variables xi, 1 ≤ i ≤ k, that ensure that
F (x1, x2, . . . , xk) is a descending path through σ. For all i ∈ [1, k], the following constraints
ensure that the intermediate nodes of F (x1, x2, . . . , xk) are not outside the corresponding edges:

h(bi) ≤ xi ≤ h(ai), when h(ai) 6= h(bi), (3.3)

and 0 ≤ xi ≤ |aibi|, when h(ai) = h(bi). (3.4)

The constraints that ensure that F (x1, x2, . . . , xk) is a descending path are: h(pi) ≥ h(pi+1)
for all i ∈ [0, k]. For each i such that aibi is horizontal, h(pi) is a constant of value Hi = h(ai).
Moreover, h(p0) and h(pk) are also constants of values H0 = h(s) and Hk+1 = h(t) respectively.
For all other i ∈ [1, k], h(pi) = xi. Therefore, for every i ∈ [1, k], the corresponding height
constraint expressed in terms of variables xi’s has one of the following forms:

xi ≥ xi+1 (3.5)

Hi ≥ xi+1 (3.6)

xi ≥ Hi+1 (3.7)

Hi ≥ Hi+1 (3.8)

Note that the constraint in Equation (3.8) is either always satisfied, or never satisfied. Clearly,
the constraint is redundant in the former case, and there is no descending path through σ from
s to t in the latter case.

30

Lemma 3.7. There is a unique SDP through σ from s to t, provided that there is a descending
path through σ from s to t.

Proof. Any SDP through σ from s to t is an instance of F (x1, x2, . . . , xk) because an SDP does
not bend at an interior point of a face (Lemma 3.2). Moreover, the length of an SDP through
σ from s to t corresponds to a local minimum of the length of F (x1, x2, . . . , xk) subject to
the constraints in Equations (3.3) to (3.8), i.e., a local minimum of L(x1, x2, . . . , xk) subject
to those constraints. Now observe that the constraints in Equations (3.3) to (3.8) are linear,
and therefore, the domain defined by them is convex. Since L(x1, x2, . . . , xk) is a strictly
convex function (Lemma 3.6), it has at most one local minimum in this convex domain [22,
Section 4.2.1]. Now, the existence of a descending path through σ from s to t implies that the
domain is not an empty set. Moreover, the equalities in the constraints imply that the domain
is a closed set. Function L(x1, x2, . . . , xk), therefore, has exactly one local minimum in the
domain defined by the constraints. So, there is a a unique SDP through σ from s to t.

Lemma 3.8. There is at most one LSDP through σ from s to t.

Proof. When there is no descending path through σ from s to t, there is clearly no LSDP
through σ from s to t. Otherwise, the proof is the same as in Lemma 3.7 except that the
Equations (3.3) and (3.4) are strict inequalities in this case, which implies that the domain
defined by the constraints in Equations (3.3) to (3.8) is an open set, and hence L(x1, x2, . . . , xk)
may not have a local minimum in the domain.

Observation 3.2. If the SDP P through σ from s to t does not go through a vertex, P is the
LSDP through σ from s to t. Otherwise, there is no such LSDP.

3.3.3 An algorithm for SDPs through given faces using convex optimization

It follows from Lemma 3.7 that we can determine an SDP through σ from s to t by solving the
following optimization problem:

minimize L(x1, x2, . . . , xk) =

k
∑

i=0

|pipi+1|

subject to the constraints in Equations (3.3) to (3.8).

This is a convex optimization problem—a well-studied optimization problem where both the
objective function and the constraints are convex functions of the variables involved. See
Boyd and Vandenberghe [22] for extensive details on convex optimization problems and their
applications.

To compute the SDP, we can solve the above optimization problem using any method avail-
able for convex optimization problems. Using the method used by Polishchuk and Mitchell [77],
we get the following running-time:

Theorem 3.1. Determining a (1 + ǫ)-approximate SDP through a sequence of k faces from s
to t takes O(k3.5 log(1

ǫ)) time.

31

Proof. We first convert the above convex optimization problem into the following equivalent
problem on variables x1, x2, . . . , xk, t0, t1, t2, . . . , tk:

minimize
k

∑

i=0

ti

subject to |pipi+1| ≤ ti, for i ∈ [0, k], (3.9)

and

the constraints in Equations (3.3) to (3.8).

It is easy to show that the coordinates of pi vary linearly with xi for all i ∈ [1, k]. As a
result, the constraint in Equation (3.9) can be written in the form |Aixi + Bixi+1 + Ci| ≤ ti
for some scalar constants Ai, Bi and Ci for all i ∈ [0, k]. This makes the above optimization
problem a Second-order Cone Program, for which finding a (1 + ǫ)-approximate solution takes
O(k3.5 log(1

ǫ)) time [67, Section 1.4]. (A rigorous derivation of this running time appears in
Algorithms and Theory of Computation Handbook [19, Section 33.6], which focuses on a more
general class of problems called Semidefinite programming.)

3.3.4 Generalized Snell’s Law

In this section we will show that the direction of any free segment of an LSDP determines
the direction of the next free segment on the path, even if there are constrained segments in
between the two free segments. The equation relating these two directions is similar to Snell’s
law of refraction of light, i.e., µ1 sin θ1 = µ2 sin θ2, so we call it Generalized Snell’s Law. In fact,
Generalized Snell’s Law has an important role in determining the direction of any segment,
whether free or constrained, as we will see in Section 3.3.5.

We start by defining a few parameters of the terrain that will be used in Generalized Snell’s
Law. We first define a unit-height vector. For any non-level edge aibi in σ, we call the vector

1
h(ai)−h(bi)

−−→
biai a unit-height vector along aibi, and denote it by νi.

Definition 3.3 (µi). For all i ∈ [1, k], the constant µi is defined as follows:

(i) if aibi is not level, µi is the length of vector νi, i.e., µi = 1
h(ai)−h(bi)

|aibi|; and

(ii) otherwise, µi = 1.

Definition 3.4 (λi,j). For i, j ∈ [1, k] such that i ≤ j, the constant λi,j is defined as follows:

(i) λi,i = 0; and

(ii) if i < j, λi,j is the rate at which the length of a constrained path from a point on edge
aibi to a point on edge ajbj changes as a function of height, provided such a path exists.

It follows immediately that λi,j =
∑j−1

r=i λr,r+1, provided λr,r+1 is defined for all r ∈ [i, j−1].
We can express λi,j in terms of νi and νj using the following lemma:

Lemma 3.9. For any i ∈ [1, k − 1] such that there exists a level line from a point in edge aibi

to a point in edge ai+1bi+1, λi,i+1 = |νi+1 − νi| if bi = bi+1 and λi,i+1 = −|νi+1 − νi| otherwise.

32

Proof. Let z be a height such that there exists an interior point pi in edge aibi and an interior
point pi+1 in edge ai+1bi+1 with h(pi) = h(pi+1) = z. The existence of a level line from aibi

to ai+1bi+1 implies that both of these edges are non-level. Therefore, h(ai) > z > h(bi) and
h(ai+1) > z > h(bi+1). These inequalities together with the fact that fi is a triangle imply
that either bi = bi+1 (Figure 3.9(a)), or ai = ai+1 (Figure 3.9(b)).

p′i p′i+1

r′i

ri

fi

pi

ai ai+1

pi+1

bi = bi+1

(a)

ri

r′i
p′i+1p′i

fi

pi

bi

pi+1

bi+1

ai = ai+1

(b)

Figure 3.9: Expressing λi,i+1 in terms of νi and νi+1.

We now prove the lemma for each of the cases bi = bi+1 and ai = ai+1.

When bi = bi+1 (Figure 3.9(a)), let
−→
bip

′
i and

−−−→
bip

′
i+1 be the vectors νi and νi+1 respectively.

Clearly, h(p′i) = h(p′i+1) = h(bi) + 1 by the definition of a unit-height vector, and hence, pipi+1

and p′ip
′
i+1 are parallel to each other. So, △bipipi+1 and △bip

′
ip

′
i+1 are similar triangles. It

follows trivially that
|pipi+1|
|p′ip′i+1|

=
|biri|
|bir′i|

, (3.10)

where ri ∈ pipi+1 and r′i ∈ p′ip
′
i+1 are two points such that biri ⊥ pipi+1 and bir

′
i ⊥ p′ip

′
i+1. Now,

|biri| = h(pi) − h(bi) = z − h(bi), and |bir
′
i| = h(p′i) − h(bi) = 1. Moreover,

−−−→
p′ip

′
i+1 = νi+1 − νi.

So, Equation (3.10) implies:

|pipi+1|
|νi+1 − νi|

=
z − h(bi)

1

⇒ |pipi+1| = |νi+1 − νi| · (z − h(bi))

⇒ d

dz
|pipi+1| = |νi+1 − νi| = λi,i+1

by definition.

When ai = ai+1, (Figure 3.9(b)), let
−−→
p′iai and

−−−→
p′i+1ai be the vectors νi and νi+1 respectively,

and ri ∈ pipi+1 and r′i ∈ p′ip
′
i+1 be two points such that airi ⊥ pipi+1 and air

′
i ⊥ p′ip

′
i+1. As in

the previous case, we have:

|pipi+1|
|p′ip′i+1|

=
|airi|
|air′i|

|pipi+1|
|νi+1 − νi|

=
h(ai) − z

1

⇒ |pipi+1| = |νi+1 − νi| · (h(ai) − z)

33

⇒ d

dz
|pipi+1| = −|νi+1 − νi| = λi,i+1

by definition.

We establish Generalized Snell’s Law in the following lemma. The lemma focuses on a path
that does not always obey the height constraint (i.e., the constraint of being descending). More
precisely, the lemma is about a path in which all the segments are constrained except the first
segment and the last segment which can be ascending or descending. As we have mentioned
before, the significance of the lemma will become clear in Section 3.3.5 when we will combine
this lemma with the height constraint of our paths in order to characterize the bend angles
of an LSDP in Theorem 3.2. Recall that σ is the face sequence (f0, f1, . . . , fk), where for all
i ∈ [1, k], fi−1 ∩ fi is the edge aibi with h(ai) ≥ h(bi).

ac+2

bc bd

ac+1

bc+2

ad

bc+1

ac

pd

pc

α

α
β

β

pc+1 pc+2

rd

pc−1

pd+1

rc

Figure 3.10: Path Q with all intermediate nodes at height h(pc).

Lemma 3.10. Let c and d be two indices such that 1 ≤ c ≤ d ≤ k, and pc−1 and pd+1 be points
interior to faces fc−1 and fd respectively. Let Q = (pc−1, pc, pc+1, . . . , pd−1, pd, pd+1) be a (not
necessarily descending) path such that pi is an interior point of edge aibi for all i ∈ [c, d], and
the subpath from pc to pd is constrained (hence, h(pi) = h(pc) for all i ∈ [c, d]). Let α and β
be respectively the entering angle at acbc and the exiting angle at adbd. See Figure 3.10. Then:

(i) µc sin α+λc,d = µd sinβ iff the length of Q is increased by moving the constrained subpath
(pc, pc+1, . . . , pd) upward (i.e., towards the ai’s) and downward (i.e., towards the bi’s);

(ii) µc sin α+λc,d > µd sinβ iff the length of Q is increased by moving the constrained subpath
(pc, pc+1, . . . , pd) upward (i.e., towards the ai’s); and

(iii) µc sin α+λc,d < µd sinβ iff the length of Q is increased by moving the constrained subpath
(pc, pc+1, . . . , pd) downward (i.e., towards the bi’s).

Proof. Let xi be the distance from bi to pi for all i ∈ [c, d], and let L be the length of Q. As
we move the constrained subpath up and down, Q, L, α and β are functions of xc. We will
sometimes emphasize this using notation, e.g., Q(xc).

We prove the lemma by differentiating L with respect to xc. More precisely, we first show

that d
dxc

L = sinα +
λc,d

µc
− µd

µc
sinβ, and then we prove each part of the lemma.

34

We have:

L = |pc−1pc| +
d−1
∑

i=c

|pipi+1| + |pdpd+1|. (3.11)

Since Q does not pass through the vertices of the terrain, we have for all i ∈ [c, d], xi ∈ (0, |aibi|).
As a result, both Q(xc − δ) and Q(xc + δ) are defined for an arbitrarily small constant δ > 0,
and hence, L is differentiable at xc. Let rc and rd be two points on respectively line acbc and
line adbd such that pc−1rc ⊥ acbc and pd+1rd ⊥ adbd (Figure 3.10). Let lc be the distance from
bc to rc, and ld be the distance from bd to rd.

The first term on the right hand side of Equation (3.11) can be written as follows:

|pc−1pc| =
√

|pc−1rc|2 + |rcpc|2
=

√

|pc−1rc|2 + (|bcpc| − |bcrc|)2
=

√

|pc−1rc|2 + (xc − lc)2.

Since the positions of pc−1 and rc do not depend on xc, differentiating the above term with
respect to xc yields:

d

dxc
|pc−1pc| =

xc − lc
√

|pc−1rc|2 + (xc − lc)2
· d

dxc
(xc − lc)

= sinα · d

dxc
(xc − lc)

= sinα .

The last term on the right hand side of Equation (3.11) can be written as follows:

|pdpd+1| =
√

|rdpd+1|2 + |rdpd|2
=

√

|rdpd+1|2 + (|bdrd| − |bdpd|)2
=

√

|rdpd+1|2 + (ld − xd)2.

Since the positions of pd+1 and rd do not depend on xd, differentiating the above term with
respect to xd yields:

d

dxd
|pdpd+1| =

ld − xd
√

|rdpd+1|2 + (ld − xd)2
· d

dxd
(ld − xd)

= sinβ · d

dxd
(ld − xd)

= − sinβ .

We now have two cases as follows. When c = d,
∑d−1

i=c |pipi+1| = 0. So, by differentiating
Equation (3.11) with respect to xc = xd, we get:

d

dxc
L =

d

dxc
|pc−1pc| + 0 +

d

dxd
|pdpd+1|

= sin α − sinβ

= sin α +
λc,d

µc
− µd

µc
sinβ,

35

since µc = µd and λc,d = λc,c = 0.

When c < d, we have h(ai) > h(bi) for all i ∈ [c, d] since a constrained segment does not
intersect a level edge. Let z = h(pc). Clearly, for all i, we can express xi in terms of z as
follows:

xi =
z − h(bi)

h(ai) − h(bi)
|aibi| = µi(z − h(bi)).

This implies that dxi

dz = µi. Moreover, because h(ai) > h(pi) = z > h(bi) for all i ∈ [c, d], λi,i+1

is defined for all i ∈ [c, d − 1]. By differentiating Equation (3.11) with respect to xc, we have:

d

dxc
L =

d

dxc
|pc−1pc| +

d

dxc

d−1
∑

i=c

|pipi+1| +
d

dxc
|pdpd+1|

= sin α +

(

d

dz

d−1
∑

i=c

|pipi+1|
)

· dz

dxc
+

d

dxd
|pdpd+1| ·

dxd

dz
· dz

dxc

= sin α +

(

d

dz

d−1
∑

i=c

|pipi+1|
)

· 1

µc
− sinβ · µd

µc

= sin α +
λc,d

µc
− µd

µc
sinβ,

by the definition of λc,d.

Therefore, in both cases, d
dxc

L = sin α+
λc,d

µc
− µd

µc
sinβ. Each part of the lemma then follows

immediately:

(i) Moving the constrained subpath (pc, pc+1, . . . , pd) upward and downward increases the
length of Q iff

L is locally minimum at xc

⇔ d

dxc
L = 0

⇔ µc sinα + λc,d = µd sinβ.

(ii) Moving the constrained subpath (pc, pc+1, . . . , pd) upward increases the length of Q iff

L increases with a small increase in xc

⇔ d

dxc
L > 0

⇔ µc sinα + λc,d > µd sinβ.

(iii) Moving the constrained subpath (pc, pc+1, . . . , pd) downward increases the length of Q iff

L increases with a small decrease in xc

⇔ d

dxc
L < 0

⇔ µc sinα + λc,d < µd sinβ.

36

Note that when c < d, the edge aibi is non-level for all i ∈ [c, d], since a constrained
segment does not intersect a level edge. However, when c = d, the path from pc to pd is a
trivial constrained path, and the edge acbc can be level. (In order to cover this latter case,
the statement of the above lemma expresses Q as a function of pc, even though it may appear
more intuitive to express Q as a function of the height of the constrained subpath.)

3.3.5 Complete characterization

We will now define the notion of a path segment being compatible with the preceding part of
the path to prove the main result of this section:

Theorem 3.2. A descending path that does not pass through a vertex of the terrain is an LSDP
iff each segment of the path is compatible with the part of the path preceding the segment.

Viewed another way, compatibility allows us to extend an LSDP P into a new face by adding
one more segment. Intuitively, if P contains at least one free segment then it extends via a
free segment in the direction determined by Generalized Snell’s Law, provided the direction is
descending. If the direction is not descending, the path must bend downward to follow a level
line. If P contains no free segment then it can be extended via a constrained segment, or via
a free segment in a certain range of directions. More precisely:

Definition 3.5 (Compatible Segment). Let P = (p0, p1, p2, . . . , pk, pk+1) be a descending path
through σ from a point p0 ∈ f0 − f1 to a point pk+1 ∈ fk − fk−1 such that pi is an interior
point of aibi for all i ∈ [1, k], and the part P0 of P from p0 to pk is an LSDP. Let αi and βi

be respectively the entering angle and the exiting angle of P at aibi for all i ∈ [1, k].

When P0 contains no free segment, the segment pkpk+1 is said to be compatible with P0 if
either:

(i) pkpk+1 is a free segment and µi sinαi + λi,k ≤ µk sinβk for all i ∈ [1, k]; or

(ii) pkpk+1 is a constrained segment.

When P0 contains a free segment, let c be the largest index in [1, k] such that pc−1pc is a
free segment. In this case, the segment pkpk+1 is said to be compatible with P0 if either:

(i) pkpk+1 is a free segment and µc sin αc + λc,k = µk sinβk, or

(ii) pkpk+1 is a constrained segment and µc sinαc + λc,k ≥ µk sin βk.

To prove Theorem 3.2, it is sufficient to show that a descending path P is an LSDP iff the
last segment of P is compatible with the rest of the path, provided that the rest of the path is
an LSDP. This is because we can then use induction on the number of edges on the path to
prove Theorem 3.2. The forward direction of this “iff” statement follows quite directly from
Lemma 3.10: we must show that if a path is an LSDP then its last segment is compatible. We

37

prove the contrapositive: if the last segment is not compatible then Lemma 3.10 allows us to
perturb the path slightly to shorten it, which implies that the path was not an LSDP. For the
other direction of the “iff” statement we must prove that if we add a compatible segment on to
an LSDP then we get an LSDP. Our starting point is the property that an LSDP can always
be extended (while remaining an LSDP) unless it arrives at a level edge and the next face goes
uphill. The property seems intuitive, but depends on a continuity property that moving the
endpoint of an SDP a small amount results in small movements of the intermediate nodes of the
path. This continuity property is not obvious since a small change in the position of a node can
abruptly change a free segment into a constrained one, or vice versa. As a result, perturbing a
node can merge two sequences of constrained segments into one, or can split one such sequence
into two. This implies that the two perturbed positions of the SDP may involve drastically
different values of parameters µi’s and λi,j ’s. Despite such abrupt changes in parameters, the
two paths still lie close to each other, which we will prove in Lemma 3.12 using the property
that two SDPs from s through σ are diverging as we move away from s (Lemma 3.11). Note
that Lemmas 3.11 and 3.12 deal with SDPs, not LSDPs. In other words, the paths in these
two lemmas are allowed to go through a vertex while they pass through σ.

Lemma 3.11. Let pk+1 and qk+1 be two points in fk−fk−1, and P and Q be the SDPs through
σ from s to pk+1 and qk+1 respectively. Let pk = P ∩ akbk and qk = Q∩ akbk. If pk 6= qk, then
there is no intersection between the ray that starts at pk and goes through pk+1 and the ray that
starts at qk and goes through qk+1.

bk

ak

r
qk

pk+1

P

Q
qk+1

pk

s

Figure 3.11: Proving that two SDPs from s are diverging.

Proof. Suppose for contradiction that the lemma is not true. Let r be the intersection point
of the lines pkpk+1 and qkqk+1 (Figure 3.11). By our assumption, r and pk+1 lie on the same
side of akbk. We now have two cases as follows:

Case A: If r ∈ fk, the two paths obtained by extending P and Q to point r are SDPs through
σ from s to r, and they are different paths since pk 6= qk. This contradicts Lemma 3.7.

Case B: If r 6∈ fk, we modify the (unfolded) terrain by making fk bigger as follows. We keep
the position of akbk unchanged, and shift each of the two other edges of fk further away
from pk while keeping the edge parallel to its original position, possibly shrinking other
faces into line segments. By making fk sufficiently big, we make sure that r lies in the
modified fk. This modification keeps the part of P from s to pk+1 unchanged because
there is a unique SDP through σ from s to pk+1 (Lemma 3.7). Therefore, extending P
to point r yields an SDP through σ from s to r in the modified terrain. The same is true
for the extension of Q to point r. Thus we have a contradiction as in Case A.

38

Using Lemma 3.11, we will now show in the following lemma that although perturbing
a node of an SDP can abruptly change a free segment into a constrained one, or vice versa,
its effect on the whole path is not abrupt. More precisely, moving the endpoint of an SDP
in a continuous manner while maintaining the optimality of the path results in a continuous
movement of each intermediate node.

Lemma 3.12. Let ε be a small positive constant, P be the SDP through σ from s to a point
pk+1 ∈ fk − fk−1, and pk = P ∩ akbk. Then there exists a constant δ > 0 such that for every
point qk+1 ∈ fk − fk−1 lying within distance δ from pk+1 and on the right [left] side of pkpk+1,
the SDP through σ from s to qk+1 intersects akbk at a point that lies within distance ε from pk

and on the right [respectively left] side of pkpk+1, provided that such an SDP exists.

Proof. We prove the lemma in two steps. We first construct an SDP Q from s through σ that
lies on the right [left] side of pkpk+1 in fk, and intersects akbk within distance ε from pk. We
then determine the value of δ from P and Q.

Q

P

ak

pk

Q′

bk

rk

qk
qk+1

s

q′k

q′k+1

pk+1

fk

ε

δ

Figure 3.12: Defining δ for the continuity argument in Lemma 3.12.

For the first step, let qk+1 be any point in fk − fk−1 on the right [left] side of pkpk+1 such
that the SDP Q through σ from s to qk+1 exists. Let qk = Q ∩ akbk. If |pkqk| ≤ ε, we are
done with the first step. Otherwise we modify Q as follows to ensure that |pkqk| decreases to
at most ε. Let rk be a point in pkqk such that |pkrk| = ε, and q′k+1 be a point in fk −fk−1 such
that rkq

′
k+1 ‖ pkpk+1 (Figure 3.12). Let Q′ be the SDP through σ from s to q′k+1. Such a path

exists by Lemma 3.7 as at least one of pkq
′
k+1 and qkq

′
k+1 is a descending segment that yields a

descending path from s. Because the rays pkpk+1 and q′kq
′
k+1 are non-converging (Lemma 3.11),

|pkq
′
k| < |pkrk| = ε. Path Q′ is then the required path.

For the second step, let δ be the distance of pk+1 from the line through the last segment
of the path constructed in the first step. It then follows from Lemma 3.11 that for any point
p ∈ fk − fk−1 such that p lies on the right [respectively left] side of pkpk+1 and inside the ball
defined by center pk+1 and radius δ, the SDP through σ from s to p must intersect akbk at a
point in pkq

′
k, i.e., within distance ε from pk.

We will point out a minor issue that will be helpful for our algorithm in Section 3.3.7. It
may appear from Lemma 3.12 that h(pk) > h(qk) implies h(pk+1) > h(qk+1). However, this is

39

s
p1 p2

p3

q2q1

q3

Figure 3.13: Two LSDPs from s with h(p1) > h(q1) and h(p2) < h(q2).

not always the case. For example, the two descending paths (s, p1, p2, p3) and (s, q1, q2, q3) in
Figure 3.13 are SDPs, and they have h(p1) > h(q1), but h(p2) < h(q2) and h(p3) < h(q3).

Our proof of Theorem 3.2 relies on Lemma 3.10 as well as the property that an LSDP can
always be extended (while remaining an LSDP) unless it arrives at a level edge and the next
face goes uphill. We give a careful proof of this property below.

Lemma 3.13. Let P0 be an LSDP through σ from s to an interior point pk of akbk. If an
interior point of fk is reachable from pk following a descending segment, then there is an
interior point pk+1 of fk such that the path constructed by concatenating P0 and pkpk+1 is an
LSDP.

s

qr1

Pr0

ak = v

r0

pk

fk

fk−1

bk

Pr1

P0
qr0

r1

qr2

r2

Figure 3.14: Proving the existence of a segment that extends the LSDP P0 in Lemma 3.13.

Proof. For any point r ∈ fk that is reachable from s following a descending path through σ,
we will use Pr to denote the SDP through σ from s to r, and qr to denote the last intermediate
node of Pr (i.e., qr = Pr ∩ akbk). In Figure 3.14, Pr0

, Pr1
and Pr2

are three instances of Pr,
and qr0

, qr1
and qr2

are the corresponding instances of qr.

Let r0 be an interior point of fk that is reachable from pk following a descending segment.
Lemma 3.7 implies that Pr0

exists. Now let v be the vertex of akbk such that v and qr0
lie on

the opposite sides of line pkr0, and let r1 be the farthest point from r0 in line segment r0v that
is reachable from pk following a descending segment. Note that when h(pk) ≥ h(v), r1 = v;
otherwise, r1 is the intersection point of r0v with the level line of fk at pk (Figure 3.14 shows
the latter case). Every point in r0r1 is reachable from pk following a descending segment, and
Pr is defined for all r ∈ r0r1 by Lemma 3.7.

40

We first claim that qr1
is a point in segment vpk. This is because, when h(pk) ≥ h(v)

(which implies that r1 = v), we have qr1
= r1 since qr1

6= r1 would imply Pr1
contains a part

of edge akbk which would contradict with Lemma 3.3 at face fk−1. So, qr1
= r1 = v ∈ vpk in

this case. On the other hand, when h(pk) < h(v), any point in akbk outside segment vpk has a
height less than h(r1) = h(pk), which implies that qr1

∈ vpk as qr1
r1 is a descending segment.

The claim thus holds in both the cases.

It then follows immediately that pk ∈ qr0
qr1

. Now Lemma 3.12 implies that if we move r
gradually from r0 to r1, qr will move from qr0

to qr1
in a continuous manner. So, there is a

point r2 ∈ r0r1 such that qr2
= pk. The part of Pr2

from s to pk must be the same as P0, which
implies that Pr2

is an LSDP. Therefore, r2 is the required point pk+1.

The main result of this section follows, which establishes that an LSDP can be extended
onward by adding to its end a compatible segment.

Theorem (Theorem 3.2). A descending path that does not pass through a vertex of the terrain
is an LSDP iff each segment of the path is compatible with the part of the path preceding the
segment.

Proof. We claim that a descending path P is an LSDP iff the last segment of P is compatible
with the rest of the path provided that the rest of the path is an LSDP. The theorem follows
immediately from the claim because we can then use induction on the number of edges on the
path to prove the theorem.

To be precise about our claim, let P = (s = p0, p1, p2, . . . , pk, pk+1) be a descending path
through σ from a point p0 ∈ f0 − f1 to a point pk+1 ∈ fk − fk−1 such that pi is an interior
point of aibi for all i ∈ [1, k], and the part P0 of P from p0 to pk is an LSDP. We prove that
P is an LSDP iff pkpk+1 is compatible with P0.

Let αi and βi be respectively the entering angle and the exiting angle of P at aibi for all
i ∈ [1, k].

⇒: It is sufficient to show that if pkpk+1 is not compatible with P0, then P is not an
LSDP. This follows from Lemma 3.10, as we now show by considering the following two cases,
depending on whether P0 is a constrained path or not:

(i) Path P0 contains no free segment: Since pkpk+1 is not compatible with P0, pkpk+1 is a free
segment and µi sinαi + λi,k > µk sinβk for some i ∈ [1, k]. Lemma 3.10 then implies that
we can move the constrained path (pi, pi+1, . . . , pk) downward by a small amount to make
the part of the path from pi−1 to pk+1 shorter. All segments of P remain descending, and
the only segment that changes its type (constrained or free) is pi−1pi, which becomes a
free segment. Therefore, the modified path is descending.

(ii) Path P0 contains a free segment pc−1pc: Since pkpk+1 is not compatible with P0, either
pkpk+1 is free and µc sin αc+λc,k 6= µk sinβk, or pkpk+1 is constrained and µc sinαc+λc,k <
µk sinβk. In the first case, Lemma 3.10 implies that we can move the constrained path
(pc, pc+1, . . . , pk) upward or downward by a small amount to make the part of the path
from pc−1 to pk+1 shorter. All segments of P remain descending, and none of the segments
changes its type. In the second case, Lemma 3.10 implies that we can move the constrained

41

path (pc, pc+1, . . . , pk) upward by a small amount to make the part of the path from pc−1

to pk+1 shorter. All segments of P remain descending as before, but in this case pkpk+1

becomes a free segment.

In both the cases, perturbing P decreases its length while maintaining the property of being
descending, which implies that P is not an LSDP.

⇐: Since pkpk+1 is compatible with P0, pkpk+1 is a descending segment. It then follows from
Lemma 3.13 that there is an interior point p′k+1 in fk such that (s = p0, p1, p2, . . . , pk, p

′
k+1)

is an LSDP. By the forward direction of the proof, pkp
′
k+1 is compatible with P0. In most

situations, the direction of a compatible segment is unique, so pkpk+1 and pkp
′
k+1 are collinear,

and therefore P is an LSDP. The only case where P0 can have compatible segments in more
than one direction is when P0 is constrained. The remainder of the proof deals with this case.

We have two possibilities. When pkpk+1 is constrained, since P contains no free segments,
any perturbation of its intermediate nodes makes the path infeasible. Therefore, P is an LSDP.
When pkpk+1 is free, we show as follows that any descending path Q 6= P through σ from s to
pk+1 is longer than P provided that Q does not go through a vertex. This will complete the
proof.

b1

a1 a2

b2

ak

pk

s

pk+1

qk

Pj−1

q2

p2

q1

p1

Pj

bk

P

al−1 al

pl−1

pl

ql−1
ql

bl−1 bl
Q

Figure 3.15: Constructing the paths P = P0, P1, P2, . . . , Pd = Q to prove that Q is longer
than P in the proof of Theorem 3.2.

To show that Q is longer than P , we “transform” P into Q step by step in such a way
the length of the path gradually increases. We describe the construction first, and then prove
in the next paragraph our claim about the length increase. Let Q be the descending path
(s = q0, q1, q2, . . . , qk, qk+1 = pk+1), where qi in an interior point of aibi for all i ∈ [1, k]
(Figure 3.15). Because Q is descending, and every intermediate node of P has height h(s),
we have h(qi) ≤ h(pi) = h(s) for all i ∈ [1, k]. We now construct as follows a sequence of
descending paths P = P0, P1, P2, . . . , Pd = Q such that each path goes through σ from s to
pk+1. To construct P1 from P0, let l be the smallest index in [1, k] such that ql 6= pl. Note
that l is always defined since Q 6= P , and that h(ql) < h(pl). Construct P1 by moving the
constrained subpath (pl, pl+1, . . . , pk) of P0 downward to height h(ql). In general, to construct
Pj from Pj−1 for any j > 0, let l be the smallest index in [1, k] such that ql 6= Pj−1 ∩albl. Take
the constrained subpath of Pj−1 from albl to akbk, and then move this subpath downward to
height h(ql) to get Pj (Figure 3.15). After d steps, where d is the number of free segments in
the part of Q from s to qk, we will have Pd = Q.

42

It is now sufficient to show that for any j ∈ [1, d], Pj is longer than Pj−1. Focus on a
particular j, and (as in the last paragraph) let l be the smallest index in [1, k] such that
Pj−1 ∩albl 6= ql (= Pj ∩albl). Consider the entering angles of P = P0, Pj−1 and Pj at albl, and
the exiting angles of these paths at akbk. Let α′ and α′′ be the entering angles of respectively
Pj−1 and Pj at albl. Let β′ and β′′ be the exiting angles of respectively Pj−1 and Pj at akbk.
By construction, the node of Pj−1 at albl is higher than the node of Pj at albl, and Pj−1 and
Pj share a common node (which is ql−1) at al−1bl−1. It then follows from Definition 3.2 that
α′ > α′′. Because the incoming segments of P and Pj−1 at albl are both constrained, we have
αl = α′. Therefore, αl > α′′. Similarly, the node pk of P is higher than the node of Pj−1 at
akbk, and the latter node is higher than the node of Pj at akbk. Since P , Pj−1 and Pj share
the node pk+1, we have βk < β′ < β′′. Now, the compatibility of pkpk+1 with P0 implies:

µl sin αl + λl,k ≤ µk sinβk

⇒ µl sinα′′ + λl,k < µk sinβ′′,

because all the angles here lie in the interval (−π
2 , π

2). It then follows from Lemma 3.10 that
the part of Pj from ql−1 to pk+1 is longer that the part of Pj−1 between the same points. In
other words, Pj is longer than Pj−1.

Therefore Q is longer than P , and thus P is an LSDP.

Note that the proof of Theorem 3.2 does not use Lemma 3.4. In fact, it is not hard to see
that Lemma 3.4 is a special case of Theorem 3.2.

3.3.6 An algorithm to trace an LSDP along a given initial direction

Using Theorem 3.2 we can trace as follows an LSDP from a given source point s if we are
given the starting direction for the path. We trace a segment from s in the given direction
until the segment hits an edge. When the segment is free, Theorem 3.2 gives us a unique
direction to follow in the next face along which we can extend the path further to another
face. On the other hand, when the initial segment is not free, Theorem 3.2 gives us a range
of possible directions to follow in the next face, and we can extend the path further along any
direction in this range. In general, every time the path hits an edge, in the next face we follow
a unique direction if the path traced so far has a free segment; otherwise the path traced so
far is constrained, and we follow a direction chosen from a range of possible directions. By
maintaining an index for the last free segment in the current path, we can extend the path to
another face is constant time in the real RAM model. Thus we can trace an LSDP through k
faces in O(k) time.

3.3.7 Another algorithm for SDPs through given faces

In Section 3.3.3 we reduced the problem of finding an SDP through a given sequence of k faces
to a convex optimization problem that can be solved via an approximation algorithm in time
O(k3.5 log(1

ǫ)). In this section we give an alternative (1+ ǫ)-approximation algorithm based on

the above characterization of LSDPs (Theorem 3.2). The algorithm here takes O
(

k2 log
(

kL
ǫh

))

time, where L is the length of the longest edge of the terrain, and h is the smallest distance

43

of a vertex of the terrain from a non-adjacent edge (i.e., the smallest 2D height of a triangle).
The new algorithm is faster in terms of k. However, the previous algorithm is independent of
the geometry of the terrain, which is not the case for this algorithm.

Since we will consider only paths through face sequence σ in this section, we will omit
“through σ” for ease of discussion. We assume that there exists a descending path from s to
t because the required SDP is non-existent otherwise. (Our algorithm can trivially detect the
latter case—the for loop in Line 2 fails in this case.)

As we have mentioned in Section 3.3.6, we can trace an LSDP from s using Theorem 3.2 if
we are given the starting direction for the path. However, we cannot trace an LSDP from s that
reaches a particular destination point in fk. Our algorithm uses binary search to determine
the starting direction of the path. In fact, the algorithm uses binary search to locate each
intermediate node of the path, one at a time and from s to t, in order to keep the approximation
error small, and to ensure that the algorithm works for the more general case that the optimal
path from s to t is not an LSDP, but an SDP that may go through a vertex.

Our algorithm is given below. In brief, the part of the algorithm from the beginning to
Line 8 constructs two paths Q and R that mark the “boundary” of all descending paths from
s to t. Path Q [and R] is the left [respectively, right] boundary. By “left” and “right” we mean
that the ith node qi of Q [and the ith node ri of R] lies on the left [respectively, right] of us as
we go from s to t through an interior point of aibi. Note that paths Q and R do not “cross”
each other. Also note that h(qi) may be less than h(ri) even when h(qi−1) is more than h(ri−1)
because of the situation depicted in Figure 3.13.

The rest of the algorithm performs the main task, i.e., performs binary search to locate each
node of an approximate SDP. More precisely, in the ith iteration of the for loop in Line 10,
the algorithm locates the ith intermediate node of the approximate path. To locate the ith
node, the algorithm performs binary search in the while loop in Line 17 to find a point v in
the part of aibi in between Q and R such that the LSDP from the (i− 1)th intermediate node
of approximate path to v, when extended onward, is very close to t. The binary search stops

44

when the current search range on aibi becomes smaller than δ = ǫh
5k .

let q′0 = s and r′k+1 = t;1

for i = 1 . . . k do let q′i ∈ aibi be the highest point such that h(q′i−1) ≥ h(q′i);2

for i = k . . . 1 do let r′i ∈ aibi be the lowest point such that h(r′i) ≥ h(r′i+1);3

for i = 1 . . . k do4

let qi and ri be respectively the left endpoint and the right endpoint of q′ir
′
i;5

end6

let Q be the path (q0 = s, q1, q2, . . . , qk, qk+1 = t);7

let R be the path (r0 = s, r1, r2, . . . , rk, rk+1 = t);8

let p0 = s;9

for i = 1 . . . k do10

q = qi, r = ri;11

if h(r) > h(pi−1) then12

let r be the point at height h(pi−1) on qiri;13

else if h(q) > h(pi−1) then14

let q be the point at height h(pi−1) on qiri;15

end16

while |qr| ≥ δ do17

let v be the midpoint of qr;18

trace an LSDP P (pi−1, v) from pi−1 in the direction pi−1v, until the path19

intersects Q or R;
if P (pi−1, v) intersects Q then q = v else r = v;20

end21

let pi be the higher endpoint of qr;22

end23

return P = (s, p1, p2, . . . , pk, t);24

Correctness and analysis

First of all, we have to make sure that the LSDP P (pi−1, v) traced in Line 19 is unique in the
sense that we have no freedom in choosing the direction of any segment of the path. We prove
in Lemma 3.15 that this is true for any interior point v of line segment qr. We use the following
claim in that proof:

Lemma 3.14. Inside the while loop in Line 17, all points in qr are reachable from pi−1 through
a descending segment.

Proof. By construction, for every point v in qiri there is a point w in qi+1ri+1 such that vw is
a descending segment. So, q and r are always defined before Line 17, and all points in qr are
reachable from pi−1 through a descending segment inside the while loop.

Lemma 3.15. Inside the while loop in Line 17, P (pi−1, v) is a unique LSDP for each interior
point v of line segment qr.

45

Proof. Because two different constrained segments from pi−1 cannot intersect each other at
any point other than pi−1, and because all points in qr are reachable from pi−1 (Lemma 3.14),
pi−1v is a free segment for each interior point v of qr. Theorem 3.2 then implies that at every
node of P (pi−1, v), there is a unique direction along which the LSDP can be extended.

We determine the approximation factor guaranteed by our algorithm in Lemma 3.17, using
the property that P lies close to the SDP from pi−1 to t:

Lemma 3.16. For all i ∈ [1, k], the intersection point of aibi and the SDP from pi−1 to t lies
within distance δ from pi.

qi−1

ri−1

R

Q

s t

w P ′

ai

bi

pi−1

v

qi

ri

r

q

Figure 3.16: The SDP from pi−1 to t does not cross P (pi−1, v) when v 6= w.

Proof. Let P ′ denote the SDP from pi−1 to t, and w be the intersection point of aibi and P ′

(Figure 3.16). Now focus on the binary search performed in the while loop in Line 17. It
follows from Lemma 3.13 that for any interior point v of qr, P (pi−1, v) must intersect Q or R
(or both, at t). By Lemma 3.11, P (pi−1, v) cannot cross P ′ when v 6= w. As a result, P (pi−1, v)
intersects Q for any interior point v of qw, and P (pi−1, v) intersects R for any interior point v
of wr. This is true even when P ′ intersects Q or R at a point before t. Therefore, the binary
search maintains the invariant that w is a point in qr.

The lemma then follows since |qr| < δ in Line 22.

Lemma 3.17. The algorithm returns a (1 + ǫ)-approximate SDP for any ǫ ∈ (0, 1].

Proof. For all i ∈ [0, k], let l(i) denote the length of the path (pi, pi+1, . . . , pk, t = pk+1), and
d(p) denote the length of the SDP through σ from any point p to t. We will first prove by
induction on i that for all i ∈ [0, k],

l(i) < (1 + ǫ/2)d(pi) +
5

2
(k − i)δ. (3.12)

Basis: When i = k, l(k) = |pkt| = d(pk), and hence, the claim is trivially true.

Induction: Suppose that the claim is true for all i > j for some j ∈ [0, k− 1] by induction. For
i = j, we have:

l(j) = |pjpj+1| + l(j + 1)

46

≤ |pjpj+1| + (1 + ǫ/2)d(pj+1) +
5

2
(k − j − 1)δ

≤ |pjw| + |wpj+1| + (1 + ǫ/2) (d(w) + |wpj+1|) +
5

2
(k − j − 1)δ

from the triangle inequality, where w is the intersection point of aj+1bj+1 with the SDP from
pj to t. Because |wpj+1| ≤ δ by Lemma 3.16, and ǫ ≤ 1, we have

l(j) ≤ |pjw| + (2 + ǫ/2)|wpj+1| + (1 + ǫ/2)d(w) +
5

2
(k − j − 1)δ

≤ |pjw| + (2 + 1/2)δ + (1 + ǫ/2)d(w) +
5

2
(k − j − 1)δ

= |pjw| + (1 + ǫ/2)d(w) +
5

2
(k − j)δ

< (1 + ǫ/2) (|pjw| + d(w)) +
5

2
(k − j)δ

= (1 + ǫ/2)d(pj) +
5

2
(k − j)δ.

This establishes the relation in Equation (3.12).

Now, at j = 0, we have:

l(0) < (1 + ǫ/2)d(p0) +
5

2
kδ

= (1 + ǫ/2)d(s) +
ǫh

2
≤ (1 + ǫ)d(s) ,

since h ≤ d(s). Lemma 3.14 implies that P is a descending path, and hence P is a (1 + ǫ)-
approximate SDP.

Theorem 3.3. Given a constant ǫ ∈ (0, 1], we can determine a (1 + ǫ)-approximate SDP
through σ from s to t in O

(

k2 log
(

kL
ǫh

))

time.

Proof. In each iteration of the for loop (Line 10), the while of the binary search iterates
O(log(L/δ)) times because the while divides an edge segment into halves until its length
becomes less than δ = hǫ

5k . In each iteration of the while loop, tracing LSDP P (pi−1, v) takes
O(k) time. Considering the outer loop, which iterates k times, the total time needed for the
algorithm is O

(

k2 log(L/δ)
)

, i.e., O
(

k2 log
(

kL
ǫh

))

.

The theorem then follows from Lemma 3.17.

3.4 Sequence tree approach for SDPs

So far we have only addressed the algorithmic problem of finding an LSDP through a given
sequence of faces. In this section we address the problem of finding an SDP from s to t when
the face sequence is not specified. Our discussion in this section follows the main framework of
the algorithm by Chen and Han [28] that finds a shortest path (i.e., not a shortest descending

47

path). They construct a sequence tree rooted at s that captures all the possible edge/face
sequences of shortest paths. The sequence tree can then be used to find the shortest s-t path
for any t. Assuming for the moment that the terrain is convex, the root of the sequence tree
corresponds to vertex s, and every other node of the tree corresponds to a portion of an edge
of the terrain. Any path from the root s to a node v in the tree corresponds to a sequence of
(portions of) edges that can be traversed by a geodesic path—i.e., edges whose unfolding can
be stabbed by a wedge of straight lines emanating from s. Figure 3.17 shows the sequence tree
for a part of a terrain, where the portions of the edges represented by the tree nodes are marked
with dashed line segments and labeled with the labels of the corresponding tree nodes. The
shaded path in Figure 3.17(b) corresponds to the sequence of edge portions traversed by the
geodesic paths lying in the shaded wedge in Figure 3.17(a). It is straightforward to construct
a sequence tree that stores edge sequences of all geodesic paths: to grow the tree at a node
for edge portion e, take the wedge of geodesic paths arriving at e and extend it via straight
lines into the unfolded face on the other side of e, adding new tree nodes for the portions of
the one or two edges that are encountered. The tree is truncated at depth 2n (which is an
upper bound on the number faces in the terrain) because a shortest path traverses each face at
most once. But even so, the tree can be exponentially large because each node can have two
children. Chen and Han give a method of pruning the tree. A node has two children if a wedge
of geodesic paths splits at a vertex v of the terrain. They show in their one-vertex one-split
property that it suffices to store just one split for each vertex-face pair because if two geodesic
paths arrive at v ∈ f by crossing f , the longer one cannot yield shorter paths on both sides of
v.

s

e3

e1

e2 e′2

e′3

(a)

e1

s

e2

e3 e′3

e′2

(b)

Figure 3.17: (a) A part of the terrain, and (b) the corresponding part of the sequence tree for
shortest paths.

The added complication for non-convex terrains is that a geodesic path can bend at a non-
convex vertex. Chen and Han make a new node in the sequence tree for each non-convex vertex
encountered, starting a new set of wedges of geodesic paths. To differentiate such a node of the
tree from the nodes mentioned in the previous paragraph, a tree node representing a portion of
an edge is called an edge-node, and a tree node representing a vertex is called a vertex-node. A
vertex v may correspond to many vertex-nodes in the tree, but the sub-tree of geodesic paths
emanating from v is stored only once.

In our situation we want a sequence tree for shortest descending paths. There are three
aspects of the construction of Chen and Han that require modification:

48

(i) extending an LSDP into a new face;

(ii) deciding which of two edge sequences yields a shorter path from s to a vertex v; and

(iii) proving the one-vertex one-split property.

We gave an algorithm for (i) in Section 3.3, and we prove (iii) below, but we do not have
an algorithm for (ii). In other words, the main result of this section is to reduce the problem
of finding SDPs to the problem finding SDPs through a given face sequence. We show that if
there is an algorithm to find the SDP from a given source to a given target through a given
sequence of k faces that runs in R(k) time, then we can we can find an SDP from s to any
vertex v in the terrain in O(n2R(n)) time. In fact, the sub-problem we need to solve in R(k)
time in our reduction is easier than finding an SDP through a given face sequence between two
points. To be more precise, we may assume that we are given not only the source vertex v1,
the target vertex v2 and the face sequence σ, but also two LSDPs from v1 through σ such that
v2 lies in between the two LSDPs. This additional information implies that the SDP from v1 to
v2 through σ is an LSDP because the SDP must lie in between the two given LSDPs and hence
cannot go through any other vertex. (Note that for the case of shortest paths, i.e., without the
constraint of being descending, R(n) = O(1).) We will show in Section 3.5 how to solve this
sub-problem for two special classes of terrains. In the Conclusion we will discuss the difficulties
of solving this sub-problem in a general terrain.

3.4.1 Constructing a sequence tree

Our ability to extend an LSDP onward using Theorem 3.2 makes it possible to construct a
sequence tree for SDPs in the same manner as Chen and Han with one obvious modification:
the paths defining an expanding wedge are LSDPs instead of geodesic paths. However, there
are three aspects of the construction that are trivial for a geodesic path but complicated for our
problem because of the bends along an unfolded LSDP. Before we go into the details, we clarify
two relevant terms. For geodesic paths, as shown in Figure 3.17, an edge-node corresponds
to an unfolded wedge of locally shortest (i.e., geodesic) paths traveling through the relevant
face sequence. The wedge is bounded by the two geodesic paths arriving at the two ends of
the portion of the edge. For LSDPs an edge-node still corresponds to a set of locally shortest
paths traveling through the relevant face sequence. We will still call this a wedge although it
is not wedge-shaped in general because of the bends along unfolded LSDPs. The two LSDPs
arriving at the ends of the portion of the edge are called the bracketing LSDPs of the wedge.
Because LSDPs do not intersect, a wedge is a polygon bounded by the bracketing LSDPs and
the edge portion.

We will now focus on the three aspects of sequence trees that must be modified and gener-
alized for SDPs.

The first issue is extending an LSDP on to the next face efficiently. We need to store enough
information with each edge-node in the tree so that the two bracketing LSDPs of a wedge can
be extended into the next face in an efficient manner. For each of these LSDPs, we store the
index i of the last free segment as well as its direction, and the value of λi,j , where j is the
index of the last node on the path. By definition, we can compute λi,j in constant time from
λi,j−1, which makes it possible to extend the path in constant time using Theorem 3.2.

49

The second issue arises when the wedge defined by the bracketing LSDPs splits at a vertex
v of the terrain. At this point, we need to compute the LSDP from the source to v for two
reasons. This path is one of the bracketing LSDPs for each side of the split, hence certain
information on this path (discussed in the last paragraph) should be stored in the two children
of the current node. Secondly, we need the length of this LSDP to apply the one-angle one-
split property discussed later on. By assumption, we can compute this LSDP in R(n) time
because we know the sequence of faces to use, and we know two bracketing LSDPs through
that face sequence. We add a vertex-node in the sequence tree to represent v, and store in this
vertex-node the length and other parameters of the LSDP to v.

The vertex-node for v has another significance for our problem. The construction of Chen
and Han adds a vertex-node in the above situation only if v is a non-convex vertex because a
geodesic path does not bend at convex vertices [70]. An LSDP, on the other hand, can bend at
any vertex of the terrain, and we don’t yet know how to determine the bend angle. We solve
this problem by treating every vertex in the manner Chen and Han treated the non-convex
vertices. More precisely, after adding a vertex-node for v as mentioned in the last paragraph,
we consider v as a pseudo-source, i.e., a source at a certain distance from s. Every vertex-node
is labeled with its SDP distance from s, and we “trim” away all vertex-nodes for v except one
that gives the minimum SDP distance to v.

The third issue is that the one-angle one-split property of a sequence tree for shortest
paths [28, Lemma 1], which keeps the size of the tree polynomial, is not so obvious in our
case because two SDPs from s to a vertex v through different face sequences can merge at an
interior node, which is impossible for shortest paths. Lemma 3.18 establishes the one-angle
one-split property for a sequence tree for descending paths.

Finally, the bends along LSDPs make another modification to the construction of Chen and
Han necessary: we do not discard an edge-node if it has only one child, because otherwise it
would be difficult to extend the LSDPs of a wedge onward in our case. This latter modification
results in a tree of size O(n2), compared to the O(n)-sized tree of Chen and Han.

We now elaborate our construction. We start with a tree containing only a vertex-node
representing s, and then expand the tree level by level up to depth 2n (which is an upper bound
on the number faces in the terrain). For each vertex v we maintain the current minimum length
of an SDP to v, and also, for each face-angle consisting of a vertex v and incident face f we
maintain the minimum length of an SDP that reaches v through f . The former values are
used to trim vertex-nodes from the tree, and the latter are used to trim edge-nodes using the
one-vertex one-split property. We expand a node as follows:

Case 1: Expanding a vertex-node for vertex v: For each edge (v, w) such that h(v) ≥ h(w) we
add a vertex-node child representing vertex w. We now trim as follows: If the length of
the new SDP to w is greater than or equal to the current minimum, then we trim away
the new vertex-node. Otherwise we trim the vertex-node for w that previously gave the
minimum length. For each face f incident to v, let e be the edge of f opposite v. We
add an edge-node child for the portion of e that has height at most h(v).

Case 2: Expanding an edge-node for a portion of edge e arrived at through face f : Let f ′ be
the other face incident to e, and let the other edges of face f ′ be e′ and e′′, with vertex
w between them (Figure 3.18). We extend the wedge for the current edge-node into the

50

face f ′ and add an edge-node child representing the portions of e′ and e′′ covered by the
wedge. There can be at most two such children, and when there are two, we also add a
vertex-node child representing w.

f

f ′ w

e′

e′′

e

Figure 3.18: Expanding an edge-node.

In case we have added three children we now trim as follows. We have just found a
new SDP to w through f ′. Compare the length of this SDP to the current minimum for
this face-angle (i.e., for the vertex-face pair (w, f ′)). The one-angle one-split property
(Lemma 3.18) allows us to trim two of the three children (one edge-node and one vertex-
node) either here or from the previous record-holder. Finally, we apply the rule for
vertex-node trimming from Case 1.

If we must answer queries about actual SDPs, rather than their lengths, then at every
vertex-node we must store information about the arriving LSDP—specifically the first or last
free segment.

3.4.2 Correctness of our construction

As in Chen and Han, the most critical part of our construction is the guarantee that each
face-angle contributes to at most one wedge split in the sequence tree. The following lemma
provides this guarantee by establishing the one-angle one-split property for our sequence tree.

In the previous section we referred to the “face sequence” of a path because paths were
assumed to not go through vertices. Because every pair of consecutive faces in a face sequence
must share an edge, the sequence is in fact equivalent to an edge sequence. We must now
generalize to the “face/vertex sequence” of a path, which lists all vertices and faces that the
path traverses. Note that a vertex v lying in-between two faces f1 and f2 in a face/vertex
sequence can be either the only common vertex of f1 and f2, or one of the two common
vertices.

Lemma 3.18. Let f = △vv1v2 be any (counter-clockwise) face and let P1 and P2 be two SDPs
from s to v that reach v through the interior of f (Figure 3.19). Suppose that P1 [and P2] uses
face/vertex sequence σ1 [respectively σ2] ending with f . Let f1 be the face across vv1 and f2 be
the face across vv2. (Thus we have four potential face/vertex sequences for SDPs: σ1f1, σ1f2,
σ2f1 and σ2f2.)

If the length of P2 is less than or equal to the length of P1, then one of the two face/vertex
sequences σ1f1 and σ1f2 can be discarded without losing any SDPs.

51

v′

w

f

P1

P2
Q

v1

v2

σ1

σ2

f1

f2

vs

s

Figure 3.19: Proving that the face/vertex sequence σ1f2 can be discarded when P2 is shorter
than P1.

Proof. Let σ be the longest common suffix of σ1 and σ2. (Faces in σ are shaded in Figure 3.19.)
Paths P1 and P2 enter the first face/vertex of σ from different faces/vertices, and may merge
somewhere along σ before arriving together at v. Suppose without loss of generality that,
traveling from v to s, the path P2 enters σ to the left of P1, as shown in the figure.

We will prove that the face/vertex sequence σ1f2 can be discarded, i.e., that any descending
path through this sequence can be replaced by a path that is at least as short and uses a different
face/vertex sequence. We will use the following notation for convenience: let L(P) denote the
length of a path P , and for two points a and b in P , let P (a, b) be the subpath of P from a to
b.

Suppose there is a descending path Q that follows σ1 to reach an interior point v′ of edge
vv2. Such a path must cross P2 inside σ, say at a point w. (It does not matter that the
intersection of Q and P2 may be more than a single point.) Consider the path P ′

1 from s to
v that consists of Q(s, w) followed by P2(w, v). Path P ′

1 is descending from s to v in σ1. We
claim that it is at least as long as P1. This is because by Lemma 3.7 there is a unique SDP
through any given face sequence; and the same is true for face/vertex sequences. Thus, since
P1 is the unique SDP from s to v through σ1, we have L(P1) ≤ L(P ′

1).

Combining this with our hypothesis that L(P2) ≤ L(P1) yields L(P2) ≤ L(P ′
1). Now P2

and P ′
1 have a common suffix P2(w, v). Taking this away gives L(P2(s, w)) ≤ L(Q(s, w)).

Now consider the path Q′ consisting of P2(s, w) followed by Q(w, v′). Path Q′ is descending
from s to v′ in σ2. Comparing Q′ and Q, they have a common suffix Q(w, v′) and their prefixes
satisfy L(P2(s, w)) ≤ L(Q(s, w)). Thus L(Q′) ≤ L(Q). Therefore we do not need to consider
Q, or any path through σ1f2 in our search for SDPs.

Lemma 3.18 guarantees that the size of our sequence tree is polynomial in n. We will need
a stronger claim to determine the time requirement in Lemma 3.20. We claim that the number
of nodes is O(kn) when our level-by-level construction has finished the kth level. To be precise,
we first mark the levels with natural numbers as follows: the vertex-node for s lies at level 0,
and all the children of the ith level nodes lie at level i + 1.

52

Lemma 3.19. Right after we have constructed the kth level of the above sequence tree, the tree
has at most (12k + 1)n nodes, and at most 13n of these nodes are at the kth level.

Proof. We bound the size of the tree using an accounting scheme where we partition nodes
of the tree into n isolated vertex-nodes and O(n) paths of edge-nodes. Each of these paths is
associated with a vertex or with a face-angle (i.e., vertex-face pair). We define the paths by
cutting some links in the tree—remember that this is for accounting purposes, not for real.
First cut every link that connects a pair of vertex-nodes. Then at a vertex-node for vertex
v, cut off all the children (which are edge-nodes), and associate with v the paths starting at
the orphaned children. If an edge-node has more than one child (this happens when its wedge
expanded into the next face to include a face-angle), then it has three children (two edge-nodes
and one vertex-node); cut off all but one edge-node child, and associate with the face-angle
the path starting at the orphaned edge-node child. Note that this cutting process makes the
vertex-nodes isolated, and partitions the edge-nodes into paths.

Now we count the number of paths. By Lemma 3.18 a face-angle will be assigned at most
one path. Thus the total number of paths assigned to face-angles is at most the number of
face-angles. The number of paths associated with the vertex-node for vertex v is the number
of faces incident to v, i.e., the number of face-angles at v. Because of our trimming of vertex-
nodes, each vertex v has at most one vertex-node, and hence the total number of paths assigned
to vertex-nodes is the number of face-angles. There are at most 2n faces and therefore at most
6n face-angles. So the total number of paths is at most (1 + 1) × 6n = 12n.

Now observe that each of those 12n paths has at most k nodes (because the tree has depth
k), and that at most one node of each path lies at the kth level of the tree. Together with n
vertex-nodes, the total number of nodes and the number of nodes at the kth level become at
most (12k + 1)n and at most 13n respectively.

Lemma 3.20. Given a vertex s in the terrain, we can construct the above sequence tree in
O(n2R(n)) time and O(n2) space.

Proof. The space requirement follows from Lemma 3.19 because the tree has depth 2n, and
the amount of information we store in a tree node is constant.

To compute the time requirement, we first determine the time needed to generate and trim
one node. The child(ren) of an edge-node is generated in O(1) time if the wedge of the edge-
node is not split by a vertex, and in O(R(n)) time (by assumption) otherwise. Each child of
a vertex-node is generated in O(1) time. Thus each child node in the tree is generated in at
most O(R(n)) time. Trimming one node (and not its descendants in the tree) takes O(1) time,
but there is an operation done right before trimming that takes more than O(1) time. The
operation is to apply the one-angle one-split property (Lemma 3.18). More precisely, when
the wedge of an edge-node is split by a vertex as depicted in Figure 3.18, we have to trace
backwards along the common suffix of the two LSDPs in order to decide which face/vertex
sequence is unnecessary. Considering this operation a part of trimming, the time needed to
trim a node becomes O(n), which is O(R(n)).

We now claim that for any i > 0, our construction generates O(n) nodes in the ith level,
including the ones that are trimmed later on. Note that the ith level nodes are generated after
node generation and trimming is complete for the first (i − 1) levels. The claim follows from

53

Lemma 3.19 as follows. There are O(n) nodes in the (i− 1)th level of the tree by Lemma 3.19,
and each edge-node among them generates at most three children. So the number of the ith
level nodes generated from the edge-nodes is O(n). A (i − 1)th level vertex-node for vertex v
generates to at most 2dv children (at most dv of them are vertex-nodes, and at most dv of them
are edge-nodes), where dv is the number of edges incident to v in the terrain. Because of our
trimming of vertex-nodes in the first (i− 1) levels, each vertex has at most one vertex-node in
the (i− 1)-th level (in the first i− 1 levels to be precise). So the number of the ith level nodes
generated from the vertex-nodes is at most 2

∑

v dv, which is at most four times the number
of edges (since each edge is counted twice in the sum). Because the number of edges is O(n),
the total number of the ith level nodes generated by our construction is O(n).

We will now prove by induction on i that after the (i − 1)th level of our sequence tree has
been constructed, completing the ith level construction takes O(nR(n)) time including the time
needed for trimming. We will use the following accounting scheme to incorporate trimming
times with the claim in the previous paragraph: we consider that the time needed to generate
a node is twice the actual time needed. Since trimming a node takes asymptotically the same
time as generating a node (both are O(R(n))), our accounting scheme makes the trimming of
nodes effectively free of cost. Now the basis of the induction is obvious: at i = 1 we generate
O(n) nodes at the first level from the vertex-node for s in O(nR(n)) time, and perform no
trimming. For the induction step at i > 1, the claim in the previous paragraph implies that we
generate O(n) nodes at the ith level, which takes O(nR(n)) time. We also perform trimming,
which takes no time by our accounting scheme. This completes the proof by induction.

By adding the construction times for all of the 2n levels of the tree, the total time becomes
O(n2R(n)).

For the proof of correctness, we first consider an untrimmed sequence tree, i.e., a sequence
tree which is constructed without trimming any sub-trees at vertex-nodes (i.e., without using
the one-angle one-split property), as is done by Chen and Han. Note that the untrimmed
sequence tree, which is of exponential size, is not generated by our algorithm. We are using
the tree only to simplify the proof.

Lemma 3.21. Using the above sequence tree, we can determine an SDP from s to any vertex
v in O(n) time.

Proof. The untrimmed tree contains an SDP from s to v. Our trimming of vertex-nodes and
edge-nodes removes only paths that are not shortest. Therefore the tree contains an SDP from
s to v.

The vertex-node for v contains the length of an SDP from s to v by construction. Traversing
the tree from this vertex-node to the root to get the list of vertices in P takes O(n) time. An
SDP between every pair of consecutive vertices in this list can be traced in time linear in the
length of the path using the information stored in the tree. Therefore, the total time needed
to trace the path from s to t is O(n).

Theorem 3.4. Given a vertex s in the terrain, we can construct in O(n2R(n)) time and O(n2)
space a sequence tree that allows us to determine an SDP from s to any vertex v in O(n) time,
where R(k) is the time needed to compute the SDP through a given sequence of k faces from a
given source point to a given target point.

54

Proof. The theorem follows immediately from Lemmas 3.20 and 3.21.

3.4.3 Problems in approximating SDPs using sequence trees

The one thing that is missing from our Chen and Han modification is an algorithm to find an
SDP through a given face sequence, and we have assumed in Theorem 3.4 that we have an R(k)-
time algorithm to find the SDP through a sequence of k faces. Earlier in Sections 3.3.3 and 3.3.7
we have given two approximation algorithms for SDPs through given faces. It may appear that
replacing the R(k)-time exact algorithm in Theorem 3.4 with any of our approximation algo-
rithms would yield an efficient approximation algorithm for the SDP problem. Unfortunately
this is not the case. The reason is that the one-angle one-split property (Lemma 3.18) used
for trimming the sequence tree depends on exact lengths of the paths. If we instead trim the
sequence tree by comparing approximate lengths, the approximation error guaranteed by the
tree seems to become very large.

To be precise, consider as in Section 3.4.2 that we have an untrimmed sequence tree, and
we are trimming the tree by repeatedly applying the one-angle one-split property. If we trim
a part of the tree by comparing two (1 + ǫ)-approximate lengths, the best error bound that we
can prove for the remaining tree is larger than (1 + ǫ):

Lemma 3.22. Let f = △vv1v2 be any (counter-clockwise) face and let P1 and P2 be two SDPs
from s to v that reach v through the interior of f (Figure 3.20). Suppose that P1 [and P2] uses
face/vertex sequence σ1 [respectively σ2] ending with f . Let f1 be the face across vv1 and f2 be
the face across vv2. (Thus we have four potential face/vertex sequences for SDPs: σ1f1, σ1f2,
σ2f1 and σ2f2.)

If we have a (1+ǫ)-approximation of P1 and a (1+ǫ)-approximation of P2, and the length of
the latter approximate path is less than or equal to the length of the former, then one of the two
face/vertex sequences σ1f1, and σ1f2 can be discarded without losing any (1 + ǫ′)-approximate
SDPs, where ǫ′ = ǫ

(

1 + 2nL
h

)

.

Proof. As in the proof of Lemma 3.18, let σ be the longest common suffix of σ1 and σ2. (Faces
in σ are shaded in Figure 3.20.) Paths P1 and P2 enter the first face/vertex of σ from different
faces/vertices, and may merge somewhere along σ before arriving together at v. Suppose
without loss of generality that, traveling from v to s, the path P2 enters σ to the left of P1,
as shown in the figure. We will use the following notation (as in the proof of Lemma 3.18):
let L(P) denote the length of a path P , and for two points a and b in P , let P (a, b) be the
subpath of P from a to b.

Suppose there is a descending path that follows σ1 to reach an interior point v′ of edge vv2.
Let Q be the SDP from s to v′ through σ1. Path Q must cross P2 inside σ, say at a point w. (It
does not matter that the intersection of Q and P2 may be more than a single point.) Consider
the path P ′

1 from s to v that consists of Q(s, w) followed by P2(w, v). Path P ′
1 is descending

from s to v in σ1. We claim that it is at least as long as P1. This is because by Lemma 3.7
there is a unique SDP through any given face sequence; and the same is true for face/vertex
sequences. Thus, since P1 is the unique SDP from s to v through σ1, we have: L(P1) ≤ L(P ′

1).
Our hypothesis about the relative lengths of approximations of P1 and P2 yields:

L(P2) ≤ (1 + ǫ)L(P1)

55

v′

w

f

P1

P2
Q

v1

v2

σ1

σ2

f1

f2

vs

s

Figure 3.20: Discarding the face/vertex sequence σ1f2 when an approximation of P2 is shorter
than an approximation of P1 (Figure 3.19 repeated for convenience).

≤ (1 + ǫ)L(P ′
1)

⇒ L(P2(s, w)) + L(P2(w, v)) ≤ (1 + ǫ)(L(Q(s, w)) + L(P2(w, v)))

⇒ L(P2(s, w)) ≤ (1 + ǫ)L(Q(s, w)) + ǫL(P2(w, v))

= L(Q(s, w)) + ǫ(L(Q(s, w)) + L(P2(w, v)))

= L(Q(s, w))

(

1 + ǫ

(

1 +
L(P2(w, v))

L(Q(s, w))

))

≤ L(Q(s, w))

(

1 + ǫ

(

1 +
2nL

h

))

= (1 + ǫ′)L(Q(s, w)) ,

since L(Q(s, w)) ≥ h, and L(P2(w, v)) ≤ 2nL.

Now, the length of the SDP from s to v′ through σ2 is at most:

L(P2(s, w)) + L(Q(w, v′))

≤ (1 + ǫ′)L(Q(s, w)) + L(Q(w, v′))

≤ (1 + ǫ′)(L(Q(s, w)) + L(Q(w, v′)))

= (1 + ǫ′)L(Q) ,

which implies that the face/vertex sequence σ1f2 can be discarded without losing any (1 + ǫ′)-
approximate SDPs.

Now consider the effect of repeated applications of “trimming using approximate lengths”.
Every time we trim a part of the sequence tree by comparing two approximate lengths, the
approximation factor guaranteed by the paths in the (remaining) tree gets larger. The final
approximation factor thus depends on the number of times we make such trimming. To be more
precise, let P be an SDP from s to v, and (1 + ǫ0) be the approximation factor guaranteed
by the algorithm for SDPs through given faces. Consider the untrimmed sequence tree we

56

mentioned before, i.e., the tree constructed without trimming any sub-trees at vertex-nodes.
The untrimmed tree contains a path P0 that is a (1 + ǫ0)-approximation of P . Lemma 3.22
implies that after the first trimming event, there is a

(

1 + ǫ0
(

1 + 2nL
h

))

-approximation P1 of P0

in the sequence tree. Similarly, after the second trimming event, there is a
(

1 + ǫ0
(

1 + 2nL
h

)2
)

-

approximation P2 of P1 in the sequence tree. In general, after the ith trimming event, there is

a
(

1 + ǫ0
(

1 + 2nL
h

)2
)

-approximation Pi of Pi−1 in the sequence tree. Since each vertex-node

can result in at most one trimming event, and there are at most 12n such nodes (Lemma 3.19),

the final tree contains a path Pk for some k ≤ 12n that is a
(

1 + ǫ0
(

1 + 2nL
h

)k
)

-approximation

of Pk−1. The ratio of the length of Pk to that of P is at most:

12n
∏

i=0

(

1 + ǫ0

(

1 +
2nL

h

)i
)

≤
(

1 + ǫ0

(

1 +
2nL

h

)12n
)12n

. (3.13)

This error bound is not tight, but this is the best we could prove. We have found that a
(1 + ǫ)-approximation algorithm based on this error bound is much slower in terms of n than
the approximation algorithms we will discuss in Chapter 4, all of which use the Steiner point
approach instead. It is not clear if the blow-up in the approximation factor of an approximate
sequence tree can be inhibited to yield an efficient approximation scheme.

3.5 Polynomial time algorithms for special terrains

We now use Theorem 3.4 to give algorithms for two special classes of terrains: pseudo-convex
terrains and pseudo-orthogonal terrains.

3.5.1 Algorithm for pseudo-convex terrains

A terrain is called pseudo-convex if every concave edge in the terrain (i.e., an edge subtending
a dihedral angle of less than π radians “above” the terrain) is either vertical or horizontal. In
other words, in a pseudo-convex terrain every edge that is neither vertical nor horizontal is
convex. For example, a many-tiered wedding cake is pseudo-convex, even if each layer is dome-
shaped, and even after slices are cut from it. Clearly every convex terrain is a pseudo-convex
terrain, but not vice versa.

The LSDPs in a pseudo-convex terrain have a simple structure, which makes it easy to
compute an LSDP through a given face sequence. To elaborate, let σ = (f0, f1, . . . , fk) be
a sequence of faces in a pseudo-convex terrain, and for all i ∈ [0, k] aibi = fi−1 ∩ fi with
h(ai) ≥ h(bi). Let P = (p0, p1, p2, . . . , pk, pk+1) be an LSDP through σ such that p0 ∈ f0 − f1,
pk+1 ∈ fk−fk−1, and pi ∈ aibi for all i ∈ [1, k]. Let αi and βi be respectively the entering angle
and the exiting angle of P at pi. We show below that P consists of a sequence of constrained
segments followed by a sequence of free segments. As in Section 3.3, we first unfold the faces
in σ onto a common plane.

Lemma 3.23. There exists an index c ∈ [0, k +1] such that (p0, p1, p2, . . . , pc) is a constrained
path and (pc, pc+1, pc+2, . . . , pk+1) is a free path.

57

ai

bi

pi

fi−1 fi

pi−1

qi

pi+1

(a)

p1

pk+1

p0

(b)

Figure 3.21: (a) Impossible subpaths of an LSDP in a pseudo-convex terrain. (b) A possible
problem in tracing the LSDP.

Proof. It is sufficient to show that P does not have a free segment followed by a constrained
segment. Suppose for contradiction that for some i ∈ [1, k], pi−1pi is a free segment and pipi+1

is a constrained segment (Figure 3.21(a)). Since a constrained segment does not intersect a
level edge, aibi is not a level edge. Let qipi be a level line segment in fi−1 at pi. Clearly, the
level plane through pi intersects fi−1 ∪ fi along the path (qi, pi, pi+1). When aibi is a convex
edge, ∠aipiqi + ∠aipipi+1 ≤ π; otherwise aibi is vertical and ∠aipiqi + ∠aipipi+1 = π. Thus
∠aipiqi+∠aipipi+1 ≤ π. As pi−1pi is descending, pi−1 lies above qipi, and thus P bends strictly
upward at pi. As a result, αi < βi. This contradicts with Lemma 3.4. Therefore P does not
have a free segment followed by a constrained segment, implying that P consists of a sequence
of zero or more constrained segments followed by a sequence of zero or more free segments.

Recall that it follows from Lemma 3.4 that a free path unfolds to a straight line segment.
Because of this simple structure, we can find the LSDP P from p0 to pk+1 through σ in O(k)
time as follows: trace a constrained path through σ starting at p0, and at each node of this
constrained path check if the straight line segment connecting the node to pk+1 is compatible
with the path traced so far. By Lemma 3.8 only one bend will result in a compatible straight
line segment, and this line segment together with the preceding constrained path is the required
LSDP P , provided that P neither goes through a vertex nor leaves the faces in σ. It is possible
that the second part of P (i.e., the straight line segment) is along a compatible direction at
the last node of the constrained path, yet the line segment goes through a vertex or leaves
the faces in σ, as shown in Figure 3.21(b). However, this is not an issue for our algorithm
below. This is because our algorithm traces such a path while constructing a sequence tree
as described in Section 3.4.1, where we have two bracketing LSDPs from p0 through σ. The
existence of these bracketing LSDPs rules out the possibility that the LSDP traced through σ
goes through a vertex or leaves the faces in σ since the traced LSDP must lie in between the
bracketing LSDPs.

Theorem 3.5. Given a vertex s, we can construct in O(n3) time and O(n2) space a sequence
tree that allows us to determine an SDP from s to any vertex v in O(n) time.

Proof. The proof follows immediately from Theorem 3.4, since R(k) = O(k) in a pseudo-convex
terrain.

58

The above theorem applies immediately to a pseudo-concave terrain, which is defined sim-
ilarly: a terrain is called pseudo-concave if every convex edge in the terrain is either vertical
or horizontal.

3.5.2 Algorithm for pseudo-orthogonal terrains

A terrain is called pseudo-orthogonal if every face in the terrain is either vertical or horizontal.
This is a generalization of an orthogonal terrain because a vertical face need not be parallel to
the xz or yz plane. In other words, the class of pseudo-orthogonal terrains includes orthogonal
terrains.

Every pseudo-orthogonal terrain is clearly a pseudo-convex terrain. Hence Theorem 3.5
applies directly to a pseudo-orthogonal terrain. But the LSDPs in a pseudo-orthogonal terrain
are much simpler in structure than the LSDPs in a pseudo-convex terrain, and we can find
an SDP in a pseudo-orthogonal terrain more easily. Although we have until now worked with
triangulated terrains, for pseudo-orthogonal terrains it is better to discard the edges where the
dihedral angle is flat. Then every edge of the terrain is either vertical or horizontal. Now let
P = (p0, p1, p2, . . . , pk, pk+1) be an LSDP through face sequence σ, with σ, pi, fi, aibi, αi and
βi defined in the same manner as in Section 3.5.1.

ai

bi

pi qi

pi+1fifi−1

pi−1

Figure 3.22: Impossible subpaths of an LSDP in a pseudo-orthogonal terrain.

Lemma 3.24. Path P is either a constrained path or a free path.

Proof. Because a pseudo-orthogonal terrain is a pseudo-convex terrain, Lemma 3.23 implies
that P consists of a sequence of zero or more constrained segments followed by a sequence of
zero or more free segments. It is therefore sufficient to show that P cannot have a constrained
segment followed by a free segment. Suppose for contradiction that for some i ∈ [1, k], pi−1pi is
a constrained segment and pipi+1 is a free segment (Figure 3.22). Since a constrained segment
does not intersect a level edge, aibi is a vertical edge. Let piqi be a level line segment in fi at
pi. Clearly both ∠aipipi−1 and ∠aipiqi are equal to π

2 , and therefore, pi−1piqi is a straight line
segment. As pipi+1 is descending and free, pi+1 lies below piqi, and thus P bends downward
at pi. As a result, αi > βi, where αi and βi are respectively the entering angle and the exiting
angle of P at pi. This contradicts with Lemma 3.4. Therefore P is either a constrained path
or a free path.

When P is a constrained path, aibi is a vertical edge for all i ∈ [1, k] since a constrained
segment does not intersect a level edge. Because both pi−1pi and pipi+1 are level, pi−1pi ⊥ aibi

59

and pipi+1 ⊥ aibi, and thus αi = βi = 0. On the other hand, when P is a free path, Lemma 3.4
implies αi = βi for all i ∈ [1, k]. In both cases, P unfolds to a straight line segment. As a
result, we can find P in O(1) time by simply connecting p0 with pk+1 in the planar unfolding
of the faces in σ. This argument is true even for the original (i.e., triangulated) terrain. This is
because P does not bend at the additional edges of the triangulation, since each of these edges
merely splits a face into two. Note that as in the case of pseudo-convex terrains, P in general
may go through a vertex or leave the faces in σ, but this will not happen in our algorithm
because of the existence of two bracketing LSDPs from p0 through σ.

Theorem 3.6. Given a vertex s, we can construct in O(n2) time and O(n) space a sequence
tree that allows us to determine in O(n) time an SDP from s to any vertex v.

Proof. The preprocessing time and the query time follow immediately from Theorem 3.4, since
R(k) = O(1) in a pseudo-orthogonal terrain. The O(n) space requirement can be achieved
by slightly modifying the algorithm in Theorem 3.4 as follows: during the construction of the
sequence tree, we discard an edge-node if it has only one child, in the same manner as in Chen
and Han [28]. This is possible because of the rectilinear nature of an LSDP in this terrain.
The space requirement then follows directly from Theorem 8 of Chen and Han [28].

3.6 Conclusion

In this chapter we have given a full characterization of the bend angles of a shortest descending
path (SDP), and have reduced the SDP problem to the problem of finding an SDP through
a given sequence of faces. Our results imply that the difficulty with finding an SDP is not in
deciding which face sequence to use, but in finding the SDP through a given face sequence.
Our results also help us identify two classes of terrains for which the SDP problem is solvable
in polynomial time. We have devised algorithms for these two classes of terrains.

One obvious open problem is the complexity of finding the SDP through a given sequence
of faces from a given source point to a given target point. Using Theorem 3.2 we can trace
an LSDP from a given source point if we are given the starting direction for the path, but we
cannot solve the inverse problem of finding the direction from the source that will reach a given
target point. The same issue was encountered by Mitchell and Papadimitriou while computing
a shortest path in the weighted region problem [71, Section 8]. In brief, when they tried to
calculate the positions of the nodes along the path that satisfies the local optimality criterion
(i.e., Snell’s law) at each node, they got k quartic equations with k unknowns, and solving for
these unknowns using elimination yields a polynomial of degree doubly exponential in k. Our
case is harder for the following reasons:

(i) As in the case of the weighted region problem, the equation for the local optimality
criterion at each node of an SDP, when expressed in terms of the positions of the nodes
along the path, contains square-roots. Because of the extra term λi,j in the case of an
SDP, simplifying the equation to “remove” the square-roots for the purpose of elimination
yields an equation with unknowns of degree eight, as opposed to a quartic equation for
the weighted region problem.

60

(ii) The local optimality criterion at a node of an SDP depends on the positions of many
other nodes. More precisely, the directions of two segments of an SDP are related to each
other even when the two segments are not adjacent, provided that all other segments in
between them are constrained. In other words, for every pair of segments of the path we
have an optimality criterion which is applicable only when all the nodes in-between are
at a common height. Thus a local optimality criterion in our case can be conditional,
which is not the case for the weighted region problem. It is not clear how to solve a set
of conditional equations with high degree of unknowns.

(iii) A local optimality criterion in our case can be an equality or an inequality. The weighted
region problem involves only equalities which are easier to solve.

Since finding the shortest path through a given face sequence in the weighted region problem
remains an open problem 18 years after the numerical issues were first encountered, we believe
that the problem of finding the SDP through a given face sequence may be intractable. So,
a more interesting open question seems to be proving the NP-hardness of finding the SDP
through a given face sequence.

We have shown in Section 3.5 two classes of terrains for which the SDP problem is easily
solvable. Discovering other easily solvable classes of terrains is another interesting direction for
further research.

Our error analysis in Section 3.4.3 seems to contradict a known experimental result [60] on
the sequence tree approach for the Euclidean shortest path problem. To be precise, in Sec-
tion 3.4.3 we have shown that in a sequence tree, trimming using approximate lengths decreases
the accuracy to a large extent. The argument used there applies directly to unconstrained
shortest paths in terrains, implying that the sequence tree approach should be vulnerable to
floating point errors even for the Euclidean shortest path problem. This is because it is prac-
tically impossible to store exact Euclidean lengths of paths—representing the lengths with a
floating point number introduces errors, as does rotating a face around an edge for unfolding.
In fact, comparing the lengths of shortest paths between two points through different face se-
quences (which is done during one-angle one-split) requires exponentially many bits, because
the algebraic numbers that describe the lengths may have exponential degrees [20, 21]. The
first known implementation [102] of the sequence tree approach (for the Euclidean shortest
path problem) had encountered floating point issues, but later on Kaneva and O’Rourke [60]
were able to avoid any serious issue “within the range [they] were able to test” in their careful
implementation. No error analysis is known to support this experimental result. We believe
that the error analysis in Section 3.4.3 can be made more accurate, at least for the Euclidean
shortest path problem. In particular, the “slack” in Inequality (3.13) can perhaps be made
tighter, so can the upper bound used in that section on the number of times a path is affected
by trimming. This demands further investigation.

61

Chapter 4

Approximation Algorithms for

Shortest Descending Paths

4.1 Introduction

For many shortest path problems on terrains, algorithms to find a good approximation of a
shortest path are more appealing than the ones to find exact paths. The main reason is that
the terrain models used in these algorithms are often approximations of reality. An exact path
in such a model is no better from a practical perspective than a good approximation of the
path unless it is easy to compute an exact path. In practice, algorithms for exact shortest paths
suffer from numerical issues in many cases. The weighted region problem is one such problem,
and so is the shortest descending path (SDP) problem as we have discovered in Chapter 3.
For both these problems, computation of an exact shortest path seems to involve complicated
numerical issues even when we are given the sequence of faces traversed by the the path.
Another issue is that any shortest path algorithm based on the continuous Dijkstra approach
or the sequence tree approach involves unfolding a sequence of faces onto a common plane,
and this operation may require an exponential number of bits to perform [2, 21]. On the other
hand, approximation schemes based on the Steiner point approach are simple in design, hence
easy to implement and attractive to practitioners [15].

Because of the difficulties in computing an exact SDP, it is logical to go for an approximate
solution to the SDP problem. In this chapter we present two algorithms to find (1 + ǫ)-
approximation of SDPs in general terrains. Both of the algorithms are based on the Steiner
point approach. More precisely, we model the SDP problem in a terrain as a shortest path
problem in a weighted directed graph. The nodes in the graph correspond to Steiner points
that are added along the edges of the terrain, with directed edges from higher to lower points
in a common face. The weight of an edge corresponds to the Euclidean distance between the
connected Steiner points. The algorithms are simple, robust and easy to implement. The two
algorithms differ only in the placement of Steiner points—the first one places Steiner points
evenly on the edges, whereas the second one places them in a geometric progression. The
running times of these algorithms depend on the number n of vertices of the terrain, and the
desired approximation factor ǫ. Moreover, because the geometry of the terrain determines the
number of Steiner points required to achieve the desired approximation factor, the running

62

times depend also on the following geometric parameters: the length L of the longest edge, the
smallest distance h of a vertex from a non-incident edge in the same face, and the largest acute
angle θ between a non-level edge and a vertical line. The running times of our algorithms are
as follows:

(i) Given a vertex s, the first algorithm places Steiner points evenly along terrain edges, so

that after an O
(

n2X
ǫ log

(

nX
ǫ

)

)

-time preprocessing phase, we can determine a (1 + ǫ)-

approximate SDP from s to any point v in O(n) time if v is either a vertex of the terrain
or a Steiner point, and in O

(

nX
ǫ

)

time otherwise, where X = L
h cos θ .

(ii) The second algorithm places Steiner points in a geometric progression along edges, and

modifies the above preprocessing time and the two query times to O
(

n2X′

ǫ log2
(

nX′

ǫ

))

,

O(n), and O
(

nX′

ǫ log
(

nX′

ǫ

))

, respectively, where X ′ = L
h .

The first algorithm is faster in terms of n, ǫ and L
h , but its running time depends on

θ. On the other hand, the running time of the second algorithm does not depend at all
on edge inclinations, and this algorithm is better for terrains with almost level edges. It is
straightforward to follow a “hybrid” approach that first checks the edge inclinations of the
input terrain, and then runs whichever of these two algorithms ensures a better running time
for that particular terrain.1

The chapter is organized as follows. We discuss in Section 4.2 the uniqueness of our Steiner
point approach, and mention why Steiner point algorithms for other terrain shortest path
problems cannot solve the SDP problem. We give our two algorithms in Section 4.3 and
Section 4.4. We conclude in Section 4.5 with a few open problems. See Section 3.2 for the
terms used this chapter. The convention used here is similar to one in Chapter 3: “edge” means
an edge of a (triangular) terrain face, “segment” means a line segment of a path, “vertex” means
an endpoint of an edge, and “node” means an endpoint of a segment. “Node” and “link” mean
the corresponding entities in a graph of Steiner points. We assume that all paths are directed.
The conventions used in the figures are shown in Figure 3.1. The figures with face sequences
show the faces after unfolding them onto a common plane.

4.2 Placing the Steiner points for SDPs

As we have mentioned before, our approximation algorithms work by first discretizing the
terrain with many Steiner points along the edges, and then determining a shortest path in a
directed graph in which each link connects a pair of vertices or Steiner points in a face of the
terrain in the descending (more accurately, in the non-ascending) direction. Although the idea
is similar to other Steiner point approaches discussed in Section 6.1.4, our approach is different
from the previous Steiner point approaches in two ways, as discussed below.

1The first algorithm appeared in Ahmed and Lubiw [6], and a preliminary idea of the second appeared in
Roy et al. [85]. A rigorous analysis of both the algorithms as well as their adaptation to a generalization of the
SDP problem (to be discussed in Chapter 5) appears in our joint work [4] with Maheshwari, Roy and others.

63

4.2.1 Problems in placing Steiner points independently

While all the previous Steiner point approaches determine the positions of Steiner points in a
face independently from all other faces, we cannot do the same for the SDP problem.

We have mentioned in Section 2.3 several Steiner point approximation algorithms for the
weighted region problem [13, 14, 15, 92] and the shortest anisotropic path problem [31, 64, 89,
91]. All these algorithms assume that every face f is totally traversable, i.e., there is a feasible
path from any point to any other point in f . To be precise, this assumption is without loss
of generality for the weighted region problem because an infeasible path only occurs in a face
with infinite weight, and such a face can simply be treated as an obstacle, i.e., not part of the
terrain. For the shortest anisotropic path problem, the assumption does not hold in general,
but all the papers on the problem make the assumption. Cheng et al. [31] assumed that the
(anisotropic) weight associated with a direction of travel is bounded by constants from both
above and below, thus any direction of travel is feasible. Moreover, the algorithm of Cheng et
al. is for a subdivision of the plane, not for a terrain. The rest of the papers [64, 89, 91] used the
anisotropic weight model of Rowe and Ross [81] which allows switchback paths to “cover” any
direction in f . (Moreover, these three papers fail to approximate a path very close to a vertex,
as we will see in Section 4.2.2.) The assumption that every face is totally traversable allows
placing Steiner points in a face independently from all other faces. Sun and Reif [91, Section V]
relaxed this assumption but only in isolated faces. Thus, they can still rely on independent
placement of Steiner points in a face. If we relax the assumption in any two adjacent faces,
their approach can make the number of Steiner points in those faces exponentially large.

For the SDP problem, ascending directions are unreachable in every face, which necessitates
the use of a non-local strategy of placing Steiner points. In particular, we cannot place Steiner
points in an edge without considering the heights of the Steiner points in other edges. To
elaborate, for each Steiner point p in an edge, if there is no Steiner point with height h(p) in
other edges of the neighboring faces, it is possible that a descending path from s to v through
Steiner points does not exist, or is arbitrarily longer than the SDP. For example, consider
the SDP P = (s, p1, p2, p3, v) in Figure 4.1, where for each i ∈ [1, 3], qi, q′i and q′′i are three
consecutive Steiner points with h(qi) > h(q′i) > h(q′′i) such that qi is the nearest Steiner point
above pi. Note that in this figure the faces have been unfolded onto a plane, and that p1 and
q′1 are the same point. There is no descending path from s to v through the Steiner points:
we must cross the first edge at q′1 or lower, then cross the second edge at q′2 or lower, and
cross the third edge at q′′3 or lower, which puts us at a height below h(v). Another important
observation is that even if a descending path exists, it may not be a good approximation of P .
In Figure 4.1, for example, if we want to reach a point v′ slightly below v, P ′ = (s, p1, q

′
2, q

′′
3 , v′)

would be a feasible path, but the last intermediate nodes of P and P ′ are not very close. We
can easily extend this example to an SDP P going through many edges such that the “nearest”
descending path P ′ gets further away from P at each step, and at one point, P ′ starts following
a completely different sequence of edges. Clearly, we cannot ensure a good approximation by
just making the Steiner points on an edge close to each other.

To guarantee the existence of a descending path through Steiner points that approximates
an SDP from s to any vertex, we have to be able to go through the Steiner points in a sequence
of faces without “losing height”, i.e., along a level path. We achieve this by slicing the terrain
with a set of horizontal planes, and then putting Steiner points where the planes intersect the

64

v
q′3

q2

p2
q′1s

p1
q3

q′′3

v′

q′2

q′′2

q′′1

q1

p3

Figure 4.1: Problems with independently placed Steiner points.

edges. The set of horizontal planes includes one plane through each vertex of the terrain, and
other planes in between them that are close enough to guarantee a good approximation ratio.
This idea of horizontal slicing was introduced in our paper [6], which gave the algorithm we
will discuss in Section 4.3.

4.2.2 Problems in placing Steiner points in geometric progression

There is another difference between our strategy of placing Steiner points and the strategies
used in other papers. For the weighted region problem, the algorithms that place Steiner points
in geometric progression run faster, in terms of n, than the algorithms that place Steiner points
uniformly. For the SDP problem, we have the opposite situation. This is because SDPs very
close to a vertex “behave” differently from shortest paths close to a vertex in the weighted
region problem.

The previous approaches using Steiner points in geometric progression rely on the property
that shortest paths in the weighted region problem cannot come very close to a particular
vertex v more than once. As a result, approximating the part of a shortest path near to v with
a path through v introduces an error which is much smaller than the length of the shortest
path further away from v. This makes the approximation error analysis easy for the parts of
the path near vertices. However, this property does not hold for shortest paths in the SDP
problem. It is possible to construct a terrain where an SDP comes very close to a vertex v as
many as O(n) times, moving far away from v after every visit of the vicinity of v. Consider the
terrain in Figure 4.2(a) which consists of the triangular faces of a pyramid with a star-shaped
base. The points s and t have the same height, so the SDP P from s to t must consist of
level segments. Moreover, P consists of O(n) segments in the figure. Figure 4.2(b) shows the
faces used by P after unfolding them onto a plane. By moving the convex vertices at the base
away from the “center” of the base while keeping them on the same plane, we can make the
points of P that are far away from v move even further away from v. Clearly it is possible to
make P enter and leave a region close to v as many as O(n) number of times. Because of such
a possibility with an SDP, the approximation error analysis of our Steiner point approach is
completely different from the previous approaches.

Note that since the SDP problem is a special case of the shortest anisotropic path problem,
the above behavior of SDPs is also shown by shortest anisotropic paths. All the three papers
on shortest anisotropic paths [64, 89, 91] that suggest the use of Steiner points in geometric
progression fail to observe this issue.

65

t

v

s

(a)

v

ts

(b)

Figure 4.2: An SDP that comes close to a vertex O(n) number of times.

4.3 Using uniform Steiner points

In our first algorithm the Steiner points on each edge are evenly spaced. To determine their
positions, we first take a set of horizontal planes such that any two consecutive planes are within
distance δ of each other, where δ is a small constant that depends on the approximation factor
and terrain parameters. We then put a Steiner point at the intersection point of each of these
planes with each of the terrain edges. One important observation is that this scheme makes the
distance between consecutive Steiner points on an edge dependent on the slope of that edge.
For instance, the distance between consecutive Steiner points is more for an almost-level edge
than for an almost vertical edge. Since θ is the largest acute angle between a non-level edge
and a vertical line, it can be shown that the distance between consecutive Steiner points on a
non-level edge is at most δ sec θ (Lemma 4.3). Because of the situation depicted in Figure 4.1,
we cannot place extra Steiner points only on the edges that are almost level. We guarantee
a good approximation ratio by choosing δ appropriately. More precisely, we make sure that
δ sec θ is small enough for the desired approximation ratio. Note that we can put Steiner points
on a level edge without considering heights, since a level edge can never result in the situation
depicted in Figure 4.1 (because all the points on such an edge have the same height).

4.3.1 Algorithm

Our algorithm runs in two phases. In the preprocessing phase, we place the Steiner points,
and then construct a shortest path tree in the corresponding graph. During the query phase,

66

the shortest path tree gives an approximate SDP in a straightforward manner.

Preprocessing phase

Let δ = ǫh cos θ
4n . We subdivide every non-level edge e of the terrain by placing Steiner points

at the points where e intersects each of the following planes: z = jδ for all positive integers
j, and z = h(x) for all vertices x of the terrain. We subdivide every level edge e by putting
enough Steiner points so that the length of each part of e is at most δ sec θ. Let V be the set of
all the vertices and Steiner points in the terrain. We then construct a weighted directed graph
G = (V, E) as follows, starting with E = ∅. For every pair (x, y) of points in V adjacent to a
face f of the terrain, we add to E a directed link from x to y if and only if h(x) ≥ h(y) and
xy is either an edge of the terrain or a segment through the interior of f . Note that we do not
add a link between two points on the same edge unless both of them are vertices. Each link
in E is assigned a weight equal to the length of the corresponding line segment in the terrain.
Finally we construct a shortest path tree T rooted at s in G using the Bushwhack algorithm
(discussed in page 15).

Note that we are mentioning set E only to make the discussion easy. In practice, we do
not construct E explicitly because the neighbors of a node x ∈ V in the graph are determined
during the execution of the Bushwhack algorithm.

v

U

h(v)

s

(a)

h(v)v

U

s

(b)

Figure 4.3: Finding an SDP from s to an interior point v of (a) a face and (b) an edge.

Query phase

When the query point v is a node of G, we return the path from s to v in T as an approximate
SDP. Otherwise, we find the node u among those in V lying in the face(s) containing v such
that h(u) ≥ h(v), and the sum of the length of the path from s to u in T and the length of
the segment uv is minimum. We return the corresponding path from s to v as an approximate
SDP in this case. To elaborate more on the latter case, let U be the set consisting of the nodes
u ∈ V with the following properties:

(i) u and v lie in a common face, and

67

(ii) h(u) ≥ h(v).

It is easy to see that if v is an interior point of a face, then all the nodes in U lie on at most
three edges of that face (Figure 4.3(a)). Otherwise, v is an interior point of an edge, and there
are at most four edges on which the nodes in U can lie (Figure 4.3(b)). Since we already know
the length of an SDP from s to any u ∈ U , we can find in |U | iterations the node u ∈ U that
minimizes the length of the path constructed by concatenating the segment uv at the end of
the path from s to u in T . The corresponding path is returned as an approximate SDP.

4.3.2 Correctness and analysis

For the proof of correctness, we show that an SDP P from s to any point v in the terrain
is approximated by a path P ′ from s to v in the augmented graph Gv(Vv, Ev) constructed as
follows. We first add v to graph G, and then add to this graph a link uv with weight |uv| for
every u ∈ V such that u and v lie in a common face, and h(u) ≥ h(v). We construct path
P ′ from P as follows. Note that P ′ might not be the path returned by our algorithm, but it
provides an upper bound on the length of the returned path.

Let P = (s = p0, p1, p2, . . . , pk, v = pk+1) be an SDP from s to v such that pi and pi+1 are
two different boundary points of a common face for all i ∈ [0, k − 1], and pk and pk+1 are two
points of a common face. For ease of discussion, let ei be an edge of the terrain through pi for
all i ∈ [1, k] (ei can be any edge through pi if pi is a vertex). Intuitively, we construct P ′ by
moving each intermediate node of P upward to the nearest Steiner point. More precisely, we
define a path P ′ = (s = p′0, p

′
1, p

′
2, . . . , p

′
k, v = p′k+1) as follows. For each i ∈ [1, k], let p′i = pi if

pi is a vertex of the terrain. Otherwise, let p′i be the nearest point from pi in V ∩ ei such that
h(p′i) ≥ h(pi). Such a point always exists in V because pi is an interior point of ei in this case,
and it has two neighbors x and y in V ∩ ei such that h(x) ≥ h(pi) ≥ h(y). Note that each node
of P ′ except possibly the last one is either a vertex or a Steiner point.

Lemma 4.1. For all i ∈ [0, k], h(p′i) ≥ h(p′i+1).

Proof. We first claim that h(p′i) ≥ h(pi+1). This claim follows from the facts that h(p′i) ≥ h(pi)
by the definition of p′i, and h(pi) ≥ h(pi+1) as P is descending. Now consider the following two
cases:

Case 1: p′i+1 = pi+1 or ei+1 is a level edge. In this case, h(p′i+1) = h(pi+1). It follows from
the inequality h(p′i) ≥ h(pi+1) that h(p′i) ≥ h(p′i+1).

Case 2: p′i+1 6= pi+1 and ei+1 is a non-level edge. In this case, there is either one or no point
in ei+1 at any particular height. Let p′′i+1 be the point in ei+1 such that h(p′′i+1) = h(p′i),
or if no such point exists, let p′′i+1 be the upper vertex of ei+1. In the latter case, we
can infer from the inequality h(p′i) ≥ h(pi+1) that h(p′i) > h(p′′i+1). Therefore we have
h(p′i) ≥ h(p′′i+1) in both cases. Since p′′i+1 ∈ V ∩ ei+1, the definition of p′i+1 implies that
h(p′′i+1) ≥ h(p′i+1). So, h(p′i) ≥ h(p′i+1).

Therefore, h(p′i) ≥ h(p′i+1) for all i ∈ [0, k].

68

Lemma 4.2. Path P ′ exists in Gv.

Proof. It is sufficient to prove that p′ip
′
i+1 ∈ Ev for all i ∈ [0, k − 1], because by definition both

p′i and p′i+1 are in Vv, and (p′k, v) ∈ Ev.

For all i ∈ [0, k − 1], p′i and p′i+1 are boundary points of a common face by definition, and
h(p′i) ≥ h(p′i+1) by Lemma 4.1. It then follows from the construction that p′ip

′
i+1 6∈ E only in

the case that both of p′i and p′i+1 lie on a common edge, and at most one of them is a vertex.
We show as follows that this is impossible. When both pi and pi+1 are vertices of the terrain,
both p′i and p′i+1 are vertices. When at least one of pi and pi+1 is an interior point of an edge,
they cannot lie on a common edge (Lemma 3.3); therefore, both of p′i and p′i+1 cannot lie on a
common edge unless both of p′i and p′i+1 are vertices. So, it is impossible that both p′i and p′i+1

lie on a common edge, and at most one of them is a vertex. Therefore, p′ip
′
i+1 ∈ E ⊂ Ev.

Lemma 4.3. For all i ∈ [1, k], |pip
′
i| ≤ ǫh

4n .

Proof. It is sufficient to show that |pip
′
i| ≤ δ sec θ for all i, because δ sec θ = ǫh

4n .

When pi = p′i, |pip
′
i| = 0 < δ sec θ. When pi 6= p′i, and ei is a level edge, |pip

′
i| ≤ δ sec θ by

construction. We will now focus on the case pi 6= p′i and ei is a non-level edge.

p′i

pi

θi

qi

ei

h(p′i)

Figure 4.4: Bounding |pip
′
i| when pi 6= p′i and ei is a non-level edge.

Consider the vertical plane containing the edge ei. Construct a line vertically upward from
pi to the point qi where h(qi) = h(p′i) (Figure 4.4). Let θi be the angle ∠qipip

′
i. Since h(qi) =

h(p′i) > h(pi), θi is an acute angle, and hence θ ≥ θi, which implies: cos θ ≤ cos θi = |qipi|
|pip′i|

,

and therefore, |pip
′
i| ≤ |qipi| sec θ. As qipi is a vertical line segment, |qipi| = h(qi) − h(pi) =

h(p′i) − h(pi) ≤ δ by construction, and therefore, |pip
′
i| ≤ |qipi| sec θ ≤ δ sec θ.

Lemma 4.4. The algorithm returns a (1 + ǫ)-SDP.

Proof. Let P and P ′ be respectively an SDP and a path in Gv as described above. Our
algorithm finds a shortest path P ′′ in Gv, which provides a descending path of the same
length. Since P ′ is a path in Gv (Lemma 4.2), the length of P ′′ is at most the length of P ′,
and therefore it is sufficient to prove that the length of P ′ is at most (1 + ǫ) times the length
of P .

69

When k = 0, implying that P does not cross an edge of the terrain, we have P = (s, v) = P ′,
which proves the lemma trivially. When k > 0, the length of P ′ is equal to:

k
∑

i=0

|p′ip′i+1| ≤
k

∑

i=0

(

|p′ipi| + |pipi+1| + |pi+1p
′
i+1|

)

(from triangle inequality)

=
k

∑

i=0

|pipi+1| + 2
k

∑

i=1

|pip
′
i| (since p0 = p′0 and pk+1 = p′k+1)

≤
k

∑

i=0

|pipi+1| +
ǫhk

2n
(Lemma 4.3)

<
k

∑

i=0

|pipi+1| + ǫh ,

because it follows from Lemma 3.3 that k is less than 2n, the number of faces in the terrain.
Now, since k > 0, p1 lies on the edge opposite to p0 in the face containing both p0 and p1, and
therefore, h ≤ |p0p1| ≤

∑k
i=0 |pipi+1|. So,

∑k
i=0 |p′ip′i+1| < (1 + ǫ)

∑k
i=0 |pipi+1|, and therefore,

the length of P ′ is at most (1 + ǫ) times the length of P .

Lemma 4.5. Let X =
(

L
h

)

sec θ. Graph G has less than 15n2X
ǫ nodes and O

(

n3X2

ǫ2

)

links.

Moreover, it has less than 5nX
ǫ nodes along any edge of the terrain.

Proof. We will first prove the last part of the lemma. For each edge e of the terrain, the
number of Steiner points corresponding to the planes z = jδ is at most L

δ − 1, and the number
of Steiner points corresponding to the planes z = h(x) is at most n − 2. So,

|V ∩ e| ≤
(

L

δ
− 1

)

+ (n − 2) + 2

<
L

δ
+ n

≤ 5n

(

L

h

) (

1

ǫ

)

sec θ =
5nX

ǫ

because δ = ǫh cos θ
4n and

(

L
h

) (

1
ǫ

)

sec θ ≥ 1.

We will now compute |V | and |E|. Let c = 5nX
ǫ for ease of discussion. As the number of

edges is at most 3n, we have: |V | < 3nc = 15n2X
ǫ .

For each face f of the terrain, there are less than 3c points in V ∩ f , and each such point
has less than 2c neighbors in f (more precisely, in the induced subgraph G[V ∩ f]). So, the
number of directed links in E contributed by f is less than 6c2, and this bound is tight for a

level face. Because there are at most 2n faces, |E| < 12nc2 = O
(

n3X2

ǫ2

)

.

Theorem 4.1. Let X =
(

L
h

)

sec θ, where L is the length of the longest edge, h is the smallest
distance of a vertex from a non-incident edge in the same face, and θ is the largest acute angle
between a non-level edge and a vertical line. Given a vertex s, and a constant ǫ ∈ (0, 1], we can

discretize the terrain with 15n2X
ǫ Steiner points so that after a preprocessing phase that takes

70

O
(

n2X
ǫ log

(

nX
ǫ

)

)

time for a given vertex s, we can determine a (1+ ǫ)-approximate SDP from

s to any point v in:

(i) O(n) time if v is a vertex of the terrain or a Steiner point, and

(ii) O
(

nX
ǫ

)

time otherwise.

Proof. The approximation factor follows from Lemma 4.4.

As we have mentioned before, we do not construct E explicitly because the neighbors of a
node x ∈ V in the graph are determined during the execution of the Bushwhack algorithm. As
a result, the (implicit) construction of G takes O(|V |) time. It follows from the running time
of the Bushwhack algorithm that the preprocessing time of our algorithm is O(|V | log |V |) =

O
(

n2X
ǫ log

(

nX
ǫ

)

)

by Lemma 4.5.

During the query phase, if v is a vertex of the terrain or a Steiner point, the approximate
path is in the tree T . Because the tree has height O(n), it takes O(n) time to trace the path.
Otherwise, v is an interior point of a face or an edge of the terrain. The last intermediate node
u on the path to v is a vertex or a Steiner point that lies on the boundary of a face containing
v. If v is interior to a face [an edge], there are 3 [respectively 4] edges of the terrain on which
u can lie. Thus there are O

(

nX
ǫ

)

choices for u by Lemma 4.5, and we try all of them to find

the best approximate path, which takes O
(

nX
ǫ

)

+ O(n) = O
(

nX
ǫ

)

time.

Corollary 4.1. If the answer to a query is the length of an SDP (rather than the SDP itself),
the query times for Cases (i) and (ii) of Theorem 4.1 become O(1) and O

(

nX
ǫ

)

respectively.

Note that the space requirement of our algorithm is O(|V |) = O
(

n2X
ǫ

)

since we are not

storing E explicitly. Also note that using Dijkstra’s algorithm with a Fibonacci heap [47]
instead of the Bushwhack algorithm yields an even simpler algorithm with a preprocessing

time of O(|V | log |V | + |E|) = O
(

n3
(

X
ǫ

)2
)

.

4.4 Using Steiner points in geometric progression

4.4.1 Algorithm

Unlike our first algorithm where the Steiner points on each edge are evenly spaced, our second
algorithm places them non-uniformly along the edges. The Steiner points we use here are of
two kinds. We first place Steiner points in “geometric progression” along the edges, as done
by Aleksandrov et al. [13]. We call these points primary Steiner points. Then we place more
Steiner points, called isohypse Steiner points, to guarantee that for every descending path in
the terrain there exists a descending path through the Steiner points. Although the number of
Steiner points used in this technique is more than in our first algorithm, the running time of
the resulting algorithm no longer depends on the slope of the edges.

71

Preprocessing phase

The primary Steiner points are placed in such a way that for each vertex v of an edge e,
there is a set of primary Steiner points whose distances from v form a geometric progression.
Although the distance between a pair of consecutive Steiner points on e increases as we move
away from v, we can still guarantee a good approximation ratio. This is because intuitively
the length of a segment connecting two edges adjacent to v increases as we move the segment
away from v—see Lemma 4.8 for a more precise statement. One observation is that if we want
to maintain the geometric progression of the distances for the Steiner points very close to v,
we would need infinitely many Steiner points near v. To avoid this problem, we do not put
any primary Steiner points in a small region near v.

Before going into further details, we will define a few constants for ease of discussion. Let

δ1 =
ǫh

6n

and

δ2 =
ǫh

6L
.

The constant δ1 will define a region near v where we do not put any primary Steiner points,
while δ2 will determine the distances between consecutive primary Steiner points outside that
region.

v

Figure 4.5: Vicinity of a vertex.

Definition 4.1 (Vicinity of a Vertex). In a face f incident to a vertex v, let p1 and p2 be two
points lying on two different edges of f at v such that |vp1| = |vp2| = δ1. Clearly, △vp1p2 is
an isosceles triangle. The vicinity of v is defined to be the union of all such isosceles triangles
around v (Figure 4.5).

Note that the vicinities of any two vertices v1 and v2 are mutually disjoint because δ1 <
h
2 < |v1v2|

2 .

In the preprocessing phase, we determine the positions of the Steiner points as follows.
First, on every edge e = v1v2 we place primary Steiner points at points p ∈ e such that
|pq| = δ1(1 + δ2)

i for q ∈ {v1, v2} and i ∈ {0, 1, 2, . . .}. Then we add up to 3n isohypse Steiner
points for each primary Steiner point and for each vertex, as follows. For every non-level edge

72

e, and every point p that is either a primary Steiner point or a vertex, we place an isohypse
Steiner point at the point where e intersects the horizontal plane through p (i.e., the plane
z = h(p)).

After placing the Steiner points, we construct a weighted directed graph G = (V, E) and
then construct a shortest path tree T rooted at s in G in the same way as in our first algorithm
(Section 4.3.1).

Query phase

The queries are handled in exactly the same manner as in Section 4.3.1.

4.4.2 Correctness and analysis

For the proof of correctness, we follow the same approach used in Section 4.3.2: we show that
an SDP P from s to any point v in the terrain is approximated by a path P ′ from s to v in
the augmented graph Gv(Vv, Ev). We construct path P ′ by moving each intermediate node of
P upward to the nearest Steiner point. The correctness of our algorithm follows because the
path returned by our algorithm is not longer than P ′.

Let P = (s = p0, p1, p2, . . . , pk, v = pk+1) be an SDP from s to v such that pi and pi+1 are
two different boundary points of a common face for all i ∈ [0, k − 1], and pk and pk+1 are two
points of a common face. Let ei be an edge of the terrain through pi for all i ∈ [1, k]; ei can be
any edge through pi if pi is a vertex. Now define path P ′ = (s = p′0, p

′
1, p

′
2, . . . , p

′
k, v = p′k+1) as

follows: for each i ∈ [1, k], let p′i = pi if pi is a vertex of the terrain; otherwise, let p′i be the
nearest point from pi in V ∩ ei such that h(p′i) ≥ h(pi).

Lemma 4.6. For all i ∈ [0, k], h(p′i) ≥ h(p′i+1).

Proof. The proof is exactly the same as in Lemma 4.1.

Lemma 4.7. Path P ′ exists in Gv.

Proof. The proof is exactly the same as in Lemma 4.2.

Lemma 4.8. For all i ∈ [1, k] such that pi is not inside a vertex vicinity, |pip
′
i| < ǫ

6 |pi−1pi|.

Proof. If pi coincides with p′i, the lemma follows trivially as |pip
′
i| = 0. We will now focus on

the case when these two points do not coincide. Since pi is not inside a vertex vicinity, there
is another Steiner point p′′i in ei such that p′i and p′′i lie on the opposite sides of pi. Let vi be
the common vertex of ei−1 and ei, wi be the other vertex of ei, and qi and w′

i be two points
in ei−1 such that piqi ⊥ ei−1 and wiw

′
i ⊥ ei−1. Figure 4.6 depicts these vertices and points, for

both the cases that the face angle at vi is (a) acute and (b) obtuse.

We will first show that |p′ip′′i | ≤ δ2|vipi|. When |vip
′′
i | < |vip

′
i|, we have |vip

′
i| ≤ (1+δ2) |vip

′′
i |

by construction, and therefore, |p′ip′′i | = |vip
′
i| − |vip

′′
i | ≤ δ2 |vip

′′
i | ≤ δ2 |vipi|. On the other

73

pi

p′′i

p′i

ei

vi

wi

pi−1

w′

i

ei−1

qi

(a)

p′i
pi

pi−1

ei−1

vi

ei

wi

w′

i

qi

p′′i

(b)

Figure 4.6: Bounding |pip
′
i| when the face angle at vi is (a) acute and (b) obtuse.

hand, when |vip
′′
i | > |vip

′
i|, then we have |vip

′′
i | ≤ (1 + δ2) |vip

′
i|, which similarly implies that

|p′ip′′i | = |vip
′′
i | − |vip

′
i| ≤ δ2 |vip

′
i| ≤ δ2 |vipi|.

Therefore, |pip
′
i| < |p′ip′′i | ≤ δ2 |vipi| = δ2 |qipi| · |vipi|

|qipi| = δ2 |qipi| · |viwi|
|w′

iwi| . The lemma then

follows from the inequalities |qipi| ≤ |pi−1pi|, |viwi| ≤ L, and |w′
iwi| ≥ h, as well as the

definition of δ2.

Lemma 4.9. For all i ∈ [1, k] such that pi is on or inside a vertex vicinity, |pip
′
i| ≤ ǫh

6n .

Proof. If pi is a vertex, the lemma follows trivially since p′i = pi in this case. If pi is not a
vertex, let ei be the edge containing pi, and vi be the vertex whose vicinity contains pi. It is
not hard to see that vi is a vertex of ei because δ1 is strictly less than h. Let qi be the primary
Steiner point on ei which lies at distance δ1 from vi. Clearly pi lies in line segment viqi. Now
p′i cannot be outside line segment viqi because otherwise we would have chosen either vi or qi

as p′i. As a result, p′i also lies in line segment viqi. Therefore, |pip
′
i| ≤ |viqi| = δ1 = ǫh

6n .

Lemma 4.10. The algorithm returns a (1 + ǫ)-SDP.

Proof. As in the proof of Lemma 4.4, it is sufficient to prove that the length of P ′ is at most
(1 + ǫ) times the length of P , where P and P ′ are respectively an SDP and a path in Gv as
described above.

When k = 0, we have P = (s, v) = P ′, which proves the lemma trivially. Otherwise, the
length of P ′ is equal to:

k
∑

i=0

|p′ip′i+1| ≤
k

∑

i=0

|pipi+1| + 2
k

∑

i=1

|pip
′
i| (as in the proof of Lemma 4.4)

<
k

∑

i=0

|pipi+1| + 2
k

∑

i=1

(

ǫ

6
|pi−1pi| +

ǫh

6n

)

(by Lemmas 4.8 and 4.9)

=
k

∑

i=0

|pipi+1| +
ǫ

3

k
∑

i=1

|pi−1pi| +
ǫhk

3n

74

≤
(

1 +
ǫ

3

)

k
∑

i=0

|pipi+1| +
ǫhk

3n

<
(

1 +
ǫ

3

)

k
∑

i=0

|pipi+1| +
2ǫh

3
,

since k < 2n. Now, because k > 0, we have h ≤ |p0p1| ≤
∑k

i=0 |pipi+1|. So,
∑k

i=0 |p′ip′i+1| <

(1+ǫ)
∑k

i=0 |pipi+1|, and therefore, the length of P ′ is at most (1+ǫ) times the length of P .

Observation 4.1. For any real number x ∈ (0, 1], log(1 + x) > x log e
2 .

Proof. Since log(1 + x) is a concave function, the definition of convcavity implies:

log(1 + x) = log((1 − x) + 2x) ≥ (1 − x) log 1 + x log 2 = x .

Lemma 4.11. Graph G has less than 111n2L
ǫh log

(

6nL
ǫh

)

nodes and O
(

n3L2

ǫ2h2 log2
(

nL
ǫh

)

)

links.

Moreover, it has less than 37nL
ǫh log

(

6nL
ǫh

)

nodes along any edge of the terrain.

Proof. We will first compute an upper bound on the number of primary Steiner points, which
will then be used to prove the lemma.

Let ne be the number of primary Steiner points on edge e. It is straightforward to see
that ne is at most 2j, where j is the largest integer satisfying the inequality δ1(1 + δ2)

j < L.
Therefore,

ne ≤ 2j

<
2 log

(

L
δ1

)

log(1 + δ2)

≥ 2

δ2
log

(

L

δ1

)

(by Observation 4.1)

=
12L

ǫh
log

(

6nL

ǫh

)

.

Since there are at most 3n edges in the terrain, the total number of primary Steiner points is
at most 3nne, which is less than 36nL

ǫh log
(

6nL
ǫh

)

.

We will now prove the last part of the lemma. For each point p that is either a primary
Steiner point or a vertex, there is at most one node in V ∩ e for any edge e. This is obvious
when p lies on e. On the other hand, if p does not lie on e, there is at most one isohypse Steiner
point on e that corresponds to p. Using the above bound on the number of primary Steiner
points, we have:

|V ∩ e| <
36nL

ǫh
log

(

6nL

ǫh

)

+ n <
37nL

ǫh
log

(

6nL

ǫh

)

.

75

We will now compute |V | and |E|. Let c = 37nL
ǫh log

(

6nL
ǫh

)

for ease of discussion. Because

the number of edges is at most 3n, we have: |V | < 3nc = 111n2L
ǫh log

(

6nL
ǫh

)

. Using the same
argument we used in the proof of Lemma 4.5, we can say that the number of directed links in
E contributed by each face of the terrain is less than 6c2. Because there are at most 2n faces,

|E| < 12nc2 = O
(

n3L2

ǫ2h2 log2
(

nL
ǫh

)

)

.

Theorem 4.2. Let X ′ = L
h , where L is the length of the longest edge, and h is the smallest

distance of a vertex from a non-incident edge in the same face. Given a vertex s, and a constant

ǫ ∈ (0, 1], we can discretize the terrain with at most 150n2X′

ǫ log
(

6nX′

ǫ

)

Steiner points so that

after a preprocessing phase that takes O
(

n2X′

ǫ log2
(

nX′

ǫ

))

time for a given vertex s, we can

determine a (1 + ǫ)-approximate SDP from s to any point v in:

(i) O(n) time if v is a vertex of the terrain or a Steiner point, and

(ii) O
(

nX′

ǫ log
(

nX′

ǫ

))

time otherwise.

Proof. The proof is the same as in Theorem 4.1 except that we use Lemmas 4.10 and 4.11
instead of Lemmas 4.4 and 4.5, respectively.

Corollary 4.2. If the answer to a query is the length of an SDP, the query times for Cases (i)

and (ii) of Theorem 4.2 become O(1) and O
(

nX′

ǫ log
(

nX′

ǫ

))

respectively.

As in the case of our first algorithm, we can use Dijkstra’s algorithm with a Fibonacci
heap [47] instead of the Bushwhack algorithm to have an even simpler algorithm with a pre-

processing time of O
(

n3X′2

ǫ2
log2

(

nX′

ǫ

))

.

4.5 Conclusion

In this chapter we have presented two robust and easy to implement approximation algorithms
for shortest descending paths (SDPs) in general terrains. The algorithms compute (1 + ǫ)-

approximate SDPs in O
(

n2X
ǫ log

(

nX
ǫ

)

)

and O
(

n2X′

ǫ log2
(

nX′

ǫ

))

time respectively, where

X = L
h cos θ and X ′ = L

h . The running times are not comparable: the first algorithm is faster
in terms of n, ǫ and L

h , but its running time depends on θ which is not the case for the second
algorithm. Another “hidden” point in this comparison is that the constant factor in the number
of Steiner points used in the first algorithm is much smaller than the same factor for the second
algorithm, see Lemmas 4.5 and 4.11. The “hybrid” approach we mentioned in the beginning
of this chapter should consider all these issues when deciding which of the algorithms is better
for a given terrain.

Our algorithms place Steiner points without using any structural information about SDPs,
like the characterization of the bend angle we discussed in Chapter 3. The same is true for
the Steiner point based algorithms for many other shortest path problems in terrains, e.g., the
weighted region problem and the shortest anisotropic path problem—we have discussed them in

76

Sections 2.3.1 and 2.3.2. One direction for further research lies in using structural information
about shortest paths to reduce the number of Steiner points. We think that the continuous
Dijkstra approach or the sequence tree approach should be helpful, particularly for the case of
single source shortest paths where we are interested in paths from a given source s to many
other points in the terrain. In this case, it may be possible to guarantee a good approximation
ratio by making the Steiner points dense in the faces near s and sparse in the faces far away
from s. A similar approach was used by Cheng et al. [29] for the shortest anisotropic path
problem, but their approach works only for a subdivision of the plane (i.e., not for a terrain)
where it is relatively easy to estimate the distance of a point from s and determine the density of
Steiner points accordingly. We think that for terrains, the continuous Dijkstra approach or the
sequence tree approach can be used to “flatten” the terrain for the purpose of finding distance
estimates. Since the characterization of bend angles are known for shortest paths in both the
SDP problem and the weighted region problem, the idea may be helpful for both problems.
Note that a similar characterization is not known for paths in the shortest anisotropic path
problem.

The fastest algorithm for the weighted region problem is the one by Aleksandrov et al. [15],
who managed to use fewer Steiner points than all previous algorithms for the problem. Their
trick is to place Steiner points along the bisectors of the face angles rather than along the
edges. It may appear that a faster SDP algorithm is possible using the same technique. The
technique, however, cannot be used for our problem very easily. The main problem is that it is
not clear how to guarantee the existence of a feasible path that approximates an SDP. More
precisely, even after isohypse Steiner points are added as in our second algorithm, there may
be no descending path through the Steiner points (along the bisectors) that lies very close to
an SDP.

When query point v is neither a vertex of the terrain nor a Steiner point, the query phase
can be made faster by using a point location data structure on the underlying weighted Voronoi
diagram defined by the Steiner points on the boundary of each face. Note that the Voronoi
diagram consists of hyperbolic arcs.

Moet et al. [73] showed that the visibility map, shortest path map and Voronoi diagram can
be computed more efficiently in a terrain in which certain geometric parameters have bounded
values. They call such terrains realistic terrains, although they mention that their assumptions
on the bounds on those parameters are not based on the terrains encountered in practice. It is
interesting to know if practical terrains follow their assumptions. If this is the case, then two
of our algorithms, more precisely those using non-uniform Steiner points, become independent
of geometry in such terrains because realistic terrains satisfy L

h = O(1).

77

Chapter 5

Shortest Gently Descending Paths

5.1 Introduction

In this chapter we introduce a generalization of the shortest descending path (SDP) problem,
called the shortest gently descending path (SGDP) problem, where a path descends, but not
too steeply. The additional constraint to disallow a very steep descent makes the paths more
realistic in practice. For example, when we ski down a mountain we avoid a too steep descent.
In such cases, a very steep segment of a descending path should be replaced by “switchbacks”
that go back and forth at a gentler slope, like the hairpin bends on a mountain road (see
Figure 5.1). The SGDP problem combines the SDP problem with the more general problem
of finding shortest anisotropic paths (discussed in Section 2.3.2), where there is a direction-
dependent weight function for every triangular face of the terrain, and the goal is to minimize
the weighted length of a path.

t

s

(a)

s

t

(b)

Figure 5.1: Descending gently towards a steep direction.

Although the SGDP problem is a special case of the shortest anisotropic path problem, we
cannot solve the SGDP problem using an existing algorithm for shortest anisotropic paths. This
is because results on shortest anisotropic paths [31, 64, 89, 91] assume that there is a feasible
path between any two points in a common face, a property that is violated when ascending
paths are forbidden. We have discussed the issue in detail for the SDP problem in Section 4.2,
and the discussion applies to the SGDP problem. In this chapter we combine techniques used
for SDPs and for shortest anisotropic paths and present two (1 + ǫ)-approximation algorithms

78

to solve the SGDP problem on general terrains. Both algorithms are based on the Steiner
point approach, and they are simple, robust and easy to implement. The algorithms are very
similar to the ones described in Chapter 4. The main difference is that in our algorithms
for SGDPs, an edge in the graph of Steiner points represents a sequence of gently descending
segments that can lie in different faces. This is unlike our SDP algorithms where an edge in
the graph represents a single segment of a descending path. The running times of our SGDP
algorithms depend on the number n of vertices of the terrain, the largest degree d of a vertex,
and the desired approximation factor ǫ. Moreover, as in Chapter 4, the geometry of the terrain
determines the number of Steiner points required to achieve the desired approximation factor,
thus the running times depend on four geometric parameters: the length L of the longest
edge, the smallest distance h of a vertex from a non-incident edge in the same face, the largest
acute angle θ between a non-level edge and a vertical line, and the angle of steepness ψ (see
Section 5.2 for details). The running times are as follows:

(i) Given a vertex s, the first algorithm places Steiner points uniformly along terrain edges

during an O
(

n2X
ǫ log

(

nX
ǫ

)

)

-time preprocessing so that we can determine a (1 + ǫ)-

approximate SGDP from s to any point v in O(nd) time if v is either a vertex of the
terrain or a Steiner point, and in O

(

n
(

d + X
ǫ

))

time otherwise, where X = L
h cos θ cos ψ .

(ii) The second algorithm places Steiner points in a geometric progression along edges, and

modifies the above preprocessing time and the two query times to O
(

n2X′

ǫ log2
(

nX′

ǫ

))

,

O(nd), and O
(

nd + nX′

ǫ log
(

nX′

ǫ

))

, respectively, where X ′ = L
h cos ψ .

The first algorithm is faster in terms of n, ǫ, L
h and ψ. But the running time of the second

algorithm is independent of θ, making it faster for terrains with almost level edges. Like
the algorithms in Chapter 4, we can combine these two algorithms into a “hybrid” one that
first checks the edge inclinations of the input terrain, and then runs whichever of these two
algorithms is faster for the terrain.1

An SGDP can have many bends in the interior of a face—Figure 5.1(b) shows such an
example. Moreover, there can be infinitely many SGDPs even between two points in a common
face. In practice, however, not all of these SGDPs are equally good. For example, for robot
motion planning, an SGDP with fewer bends is preferable because a robot needs extra time
and energy to change its direction at a bend. It is therefore natural to look for an SGDP with
a limited number of bends. Furthermore, when the energy needed to turn a robot at a bend is
proportional to the turn-angle at that bend, one may be interested in finding an SGDP with
a limited total turn-angle. We show in this chapter that both these problems are intractable.
More precisely, we prove that it is NP-hard to decide if there exists a gently descending path
of length at most L that has (i) at most k bends, or (ii) a total turn-angle at most φ.2

Our hardness results are on bicriteria shortest path problems, where the goal is to minimize
two objective functions of a path (one of them is the path length). See Mitchell [69, Section 4]
for a survey of bicriteria shortest path problems, and Daescu et al. [35] for more recent ap-
proximation algorithms. Arkin et al. [16] give hardness results on three bicriteria shortest path

1Our SGDP algorithms first appeared in Ahmed, Lubiw and Maheshwari [11]. These algorithms together
with the ones in Chapter 4 appeared later on in Ahmed et al. [4].

2A preliminary version of our hardness result appeared in Ahmed and Lubiw [8].

79

problems: (i) in a polygon with holes, finding a path whose length and total turn-angle are
below given limits; (ii) in a polygon with holes, finding a path whose lengths in two different
Li norms are below given limits; and (iii) in a polygon with red and blue faces, finding a path
whose total length in red [and blue] faces is below a given limit.

Our hardness results are significant in two ways. First, the (single criteria) shortest path
problem corresponding to our bicriteria problems is of unknown complexity. The SGDP prob-
lem and other well-studied special cases of the shortest anisotropic path problem, like the
weighted region problem and the SDP problem, share the interesting feature that although ap-
proximation algorithms are the best results known, hardness proofs seem elusive. Even some
bicriteria shortest path problems have this feature. For example, the complexity of finding a
shortest k-link path in a polygon with holes is still open [69, Open Problem 11].

Secondly, our results imply that finding a shortest anisotropic path with a limited number
of bends or a limited total turn-angle is hard. These results apply even for the anisotropic
cost model of Rowe and Ross (discussed in Section 2.3.2), a well-investigated model with many
practical applications. The only previously known hardness result on the shortest anisotropic
path problem is the hardness with a limited number of bends. This result follows from the
first result of Arkin et al. mentioned above, when the direction-dependent weight function of a
face is either a unit function (returning one for all directions) or an infinity function (returning
infinity for all directions). This previously known hardness result does not apply for the cost
model of Rowe and Ross because in this model the direction-dependent weight function in a
face can be a constant function iff the face is level, thus we cannot construct a terrain that
“represents” holes surrounded by polygon faces in the problem of Arkin et al.

The chapter is organized as follows. We define relevant terms in Section 5.2, and establish
a few properties of an SGDP in Section 5.3. We give our two algorithms in Section 5.4 and
Section 5.5. In Section 5.6 we describe the details of our construction used for our hardness
results, and prove the hardness of SGDPs with few bends. We give a few additional lemmas
in Section 5.7 to show the hardness of and SGDPs with limited total turn-angle. We conclude
in Section 5.8 with a few open problems.

5.2 Terminology

A path P from s to t on the terrain is descending if the z-coordinate of a point p never increases
while we move p along the path from s to t. Given an angle ψ ∈ [0, π

2), a line segment pq in
3D is steep if it makes an angle less than ψ with a vertical line. A steep line segment pq lies
strictly inside the cone defined by the lines at an angle ψ with a vertical line at p, as shown in
Figure 5.2. A path P is gently descending if P is descending, and no segment of P is steep. A
downward direction in a face is called a critical direction if the direction makes an angle equal
to ψ with a vertical line. (Note that only a downward direction can be a critical direction,
although both upward and downward directions can be steep.) A gently descending path is
called a critical path if each of its segments is in a critical direction. A critical path may
travel through more than one face; inside a face it will zigzag back and forth. We would like
to replace steep descending segments by critical paths. This is sometimes possible, e.g., for a
steep segment starting and ending at points interior to a face, but is not possible in general.
The details are in Lemma 5.3, which uses the following terms. A vertex v in face f is locally

80

sharp in f if v is either the higher endpoint of two steep edges or the lower endpoint of two
steep edges of f . A vertex v is sharp if it is locally sharp in all its incident faces. Note that a
sharp vertex is either the higher endpoint of all the edges incident to it, or the lower endpoint
of all such edges. A sharp vertex of the first type is like a pinnacle from which one cannot
descend gently.

q

ψ

p

Figure 5.2: The cone defined by the lines at an angle ψ with a vertical line at p, and a steep
line segment pq.

A bend on a path P in the 3D terrain (i.e., in the original terrain, without unfolding the
faces containing P onto a common plane) is a point where P changes its direction. To be
precise, P bends at a node b if the two segments ab and bc of P at b are not collinear in the
(3D) terrain. We define the turn-angle of P at b as the angle between the vectors

−→
ab and

−→
bc.

(Note that the turn angle is zero if P goes straight at b.) The total turn-angle of P is the
summation of the turn-angles of P at all intermediate nodes. Note that segments ab and bc
in these definitions can lie either in a common face or in two adjacent faces, and in the latter
case it is possible that ab and bc become collinear after the faces are unfolded onto a common
plane. This suggests that bends and turn-angles can alternatively be defined in an unfolding of
the faces. The latter definitions may be more acceptable for certain applications of the SGDP
problem, even though they are not clear when b is a vertex. Our reduction works for any of
these alternate definitions, and we will use the original ones.

The terms relevant to the 3-SAT problem [48] used in our hardness results are as follows.
A literal in a Boolean formula is an occurrence of a variable b or its negation b̄. A clause is
the logical disjunction (OR) of one or more literals. For our reduction in Sections 5.6 and 5.7,
we are given an instance f of 3-SAT, which is a Boolean formula over n variables b0, b1, b2,
. . . , bn−1 that is expressed as a logical conjunction (AND) of m clauses C0, C1, C2, . . . , Cm−1.
More precisely, f = C0 ∧ C1 ∧ C2 ∧ . . . Cm−1, where for all i ∈ [0, m − 1], Ci = (li,1 ∨ li,2 ∨ li,3)
using li,j to denote a literal.

As in previous chapters, “edge” means an edge of a (triangular) terrain face, “segment”
means a line segment of a path, “vertex” means an endpoint of an edge, and “node” means
an endpoint of a segment. “Node” and “link” mean the corresponding entities in a graph of
Steiner points. We assume that all paths are directed. The figures throughout this chapter
follow the same conventions shown in Figure 3.1. The figures in our hardness construction in
Section 5.6 use the two additional “symbols”: (i) when a path segment (which is denoted by an
arrow with a solid, dark arrowhead) is blocked by a Blocker gadget (defined in Section 5.6.2),

81

we mark the segment with a dashed arrow; and (ii) in some of the figures, we draw grids using
light-colored dotted lines for measuring purpose. The figures with face sequences show the
faces after unfolding them onto a common plane.

5.3 Properties of SGDPs

Observe that as in the case of shortest descending paths (Lemma 3.1), the following holds for
shortest gently descending paths.

Lemma 5.1. Any subpath of an SGDP is an SGDP.

Proof. The proof is trivial, and similar to the proof of Lemma 3.1.

Recall the definition of a critical path in Section 5.2. We show that any critical path in the
terrain is an SGDP.

Lemma 5.2. Any critical path from a point a to a point b in the terrain is an SGDP of length
(h(a) − h(b)) sec ψ.

Proof. Any critical path P is a gently descending path. Since each segment of P makes an
angle ψ with a vertical line, the length of P is h(a)−h(b)

cos ψ = (h(a) − h(b)) sec ψ. Ignoring the
terrain, any gently descending path from a to any point at height h(b) has length at least
(h(a) − h(b)) sec ψ. So, P is an SGDP.

We will introduce a notation to simplify our expressions involving the length of an SGDP.
For any two points p and q in a common face f , let ‖pq‖ = |(h(p) − h(q))| sec ψ when line pq
is steep, and ‖pq‖ = |pq| otherwise. Thus ‖pq‖ is the length of an SGDP from p to q if one
exists.

Observation 5.1. For any three points p, q and r in a face f :

(i) ‖pq‖ = ‖qp‖,

(ii) ‖pr‖ ≤ ‖pq‖ + ‖qr‖, and

(iii) |pq| ≤ ‖pq‖ ≤ |pq| sec ψ.

Proof. Cases (i) and (ii) are trivial. When pq is not a steep segment, Case (iii) follows imme-
diately since ‖pq‖ = |pq| in this case, and sec ψ ≥ 1. When pq is steep, let ψ′ be the angle
line pq makes with a vertical line. Clearly 0 ≤ ψ′ < ψ and therefore sec ψ′ < sec ψ. So,
|pq| = |(h(p)−h(q))| sec ψ′ < |(h(p)−h(q))| sec ψ = ‖pq‖. Moreover, since |pq| ≥ |h(p)−h(q)|,
we have ‖pq‖ = |(h(p) − h(q))| sec ψ ≤ |pq| sec ψ.

82

Like other Steiner point approaches, our graph of Steiner points has a directed link (of
appropriate cost) between two Steiner points a and b in a common face f such that the link
represents an SGDP from a to b. However, unlike other well-studied shortest paths in terrains
where the shortest path represented by the link lies completely in f , the SGDP in our case
may go through many other faces. For example, the critical path in Figure 5.1(a) is an SGDP
by Lemma 5.2, and it goes through four faces even though both s and t lie on a common face.
It is not straightforward to determine if such an SGDP exists at all—we need this information
during the construction of the graph. Moreover, in case an SGDP exists, we want to know the
number of faces used by the path because our algorithm has to return the path in the terrain
that corresponds to the shortest path in the graph. Lemma 5.3 below handles these issues:

Lemma 5.3. Let a and b be two points in a face f with h(a) ≥ h(b).

(i) If at least one of a and b is a sharp vertex, no gently descending path exists from a to b.

(ii) If neither a nor b is a locally sharp vertex in f , there exists an SGDP from a to b lying
completely in f . Moreover, the SGDP is a critical path if ab is steep.

(iii) Otherwise, there exists an SGDP from a to b that uses at most d + 1 faces, and is a
critical path.

Proof. (i) If a [or b] is a sharp vertex, the segment ap [respectively pb] is steep for any point
p in any face incident to a [respectively b]. So, no gently descending path exists from a
to b.

(ii) If ab is not a steep segment, this is the SGDP. Otherwise, there are many critical paths
in f from a to b, as shown Figure 5.3(a). To be precise, we trace one such path as follows.
Let apbq be the parallelogram defined by the critical directions at a and b in the plane
containing f (Figure 5.3). We follow a critical direction in f from a until we intersect
either pb or qb or an edge of f . Let a1 be the intersection point. Clearly, a1 is not a
locally sharp vertex in f , and therefore, if a1 is on neither pb nor qb, we can again follow
a critical direction from a1 until we intersect either pb or qb or an edge of f . Let a2 be
this intersection point. We repeat this step until we reach a point ak on either pb or qb.
Thus we get the critical path (a, a1, a2, . . . , ak, b), which is an SGDP by Lemma 5.2. This
completes the proof provided that this critical path always reaches either pb or qb.

When at most one edge of f intersects the interior of the parallelogram, our critical path
reaches either p or q by following an edge of the parallelogram at a (Figure 5.3(b)). When
two edges e1 and e2 of f intersect the interior of the parallelogram (Figure 5.3(c)), the
point e1∩e2 is neither a nor b nor an interior point of f . This is because f is a triangle, and
at most one edge of f at a [and b] intersects the interior of the parallelogram (since neither
a nor b is locally sharp in f). So, there is a “gap” between e1 and e2 in the parallelogram,
which gives us a positive constant c such that |aiai+1| > c for all i ∈ [1, k − 2]. We

therefore reach ak in a finite number of steps (in at most ‖ab‖
c + 2 steps to be precise).

(iii) In this case, at least one of a and b is a locally sharp vertex in f , and therefore, ab is a
steep line segment. If a is not a locally sharp vertex in f , let a′ = a. Otherwise, let a′

be an interior point of line segment ab such that no vertex of the terrain lies strictly in

83

f

b

q

p

a

(a)

a
e1

q

b

fp

(b)

b

a1

a2

ak−1
q

f
e2

p

e1

a

ak

(c)

Figure 5.3: (a) Three of the infinitely many critical paths from a to b when ab is a steep
segment and neither a nor b is a locally sharp vertex in f . A critical path when parallelogram
apbq contains (b) one and (c) two edges of f .

between the planes z = h(a) and z = h(a′). We similarly define a point b′, and make sure
that h(a′) > h(b′). Clearly h(a) > h(a′) > h(b′) > h(b), and a′b′ is a steep line segment.
By Case (ii) of the lemma there exists a critical path from a′ to b′ in f . We claim that
there exists a critical path from a to a′ through at most ⌊d

2⌋ + 1 faces when a 6= a′, and

that there exists a critical path from b′ to b through at most ⌊d
2⌋ + 1 faces when b 6= b′.

Because face f is used by all these three subpaths, the whole path uses at most d + 1
faces. The proof then follows from Lemma 5.2. We will now prove the first claim. The
proof for the second claim is similar, and hence omitted.

f2

fk

f1
f0

a

ak

a2 a1
a0

ak+1

Figure 5.4: A critical path from a vertex a that is locally sharp in f = f0, but not in fk.

Since a is not a sharp vertex, it must have some incident face in which it is not locally
sharp. Let (f = f0, f1, f2, . . . , fk) be (one of) the shortest sequence of faces around vertex
a such that a is not a locally sharp vertex in fk (Figure 5.4). Clearly, k ≤ ⌊d

2⌋+1. We will

84

build as follows a critical path backward from a′. Let a0 = a′. For each i ∈ [0, k − 1] in
this order, since a is a locally sharp vertex in fi, there is a point ai+1 ∈ fi∩fi+1 such that
ai+1ai is a critical direction in fi. The final point ak lies on the edge between fk and fk−1

which is a steep edge. Because a is not a locally sharp vertex in fk, and no other vertex
of fk lies above the plane z = h(ak), there exists an interior point ak+1 ∈ fk such that
both aak+1 and ak+1ak are critical directions. Clearly the path (a, ak+1, ak, . . . , a0 = a′)
is a critical path through at most ⌊d

2⌋ + 1 faces.

a′

f

a

b

Figure 5.5: An SGDP between two locally sharp vertices a and b in f that goes through Θ(d)
other faces.

It is easy to construct a terrain in which the number of faces in Case (iii) of the above
lemma is exactly d, see Figure 5.5 for an example (note that face f is a quadrilateral in the
figure, and triangulating f by adding edge ab keeps both a and b in a common face).

We would like the property of an SGDP that the path would visit a face at most once,
because our method of approximating a path introduces some error each time the path crosses
an edge. But unlike SDPs, this property does not hold for an SGDP. For example, the two
SGDPs in Figure 5.1 visit a face twice. In fact, there is no bound on the number of times a
face may be visited—the SGDP in Figure 5.1(a) can be made to spiral around the pyramid
more and more times by making angle ψ closer and closer to π

2 . We call a gently descending
path ideal if it crosses the interior of each face at most once. The good news is that we can
“convert” any non-ideal SGDP into an ideal one—we will prove this claim in the following
lemma:

Lemma 5.4. If there is a gently descending path from s to t, there exists an ideal SGDP from
s to t.

Proof. Let P0 be a gently descending path from s to t. We first show that P0 can be converted
to an ideal path without increasing its length. Then we prove that the set of all ideal s-t paths
is closed, which implies that the minimum length can be attained (not just approached). The
lemma then follows immediately.

85

For the first claim, let f be a face whose interior intersects P0, and let af [and bf] be the
infimum [respectively supremum] of the points in P0 that lie in the interior of f (considering
the natural ordering of the points in P0, i.e., from s to t). Because both P0 and f are closed
sets, both af and bf are points in P0 on the boundary of f . It follows that neither af nor bf

is a locally sharp vertex in f by definition. So, Lemma 5.3(ii) implies that there is an SGDP
from af to bf that lies completely in f . Replacing the part of P0 from af to bf with an SGDP
in f for all f yields an ideal s-t path P1 which is not longer than P0.

For the second claim we need to show that the infimum of the set of lengths of ideal gently
descending paths from s to t is attained by an ideal path. Each ideal path corresponds to a
sequence of faces with no repetition of faces. There are finitely many such face sequences. Thus
it suffices to prove the claim for a single face sequence. This follows by induction on the length
of the face sequence, based on the fact that from one face to the next face the path crosses an
edge, which is a closed set.

5.4 Approximation using uniform Steiner points

5.4.1 Algorithm

Preprocessing phase

In our first approximation algorithm (which is similar to the algorithm in Section 4.3), we
preprocess the terrain by adding uniformly spaced Steiner points as follows. We take a set
of level planes such that the distance between any two consecutive planes is at most δ =
ǫh
4n cos θ cos ψ. We make sure that there is a level plane through every vertex. We then put
Steiner points at all the intersection points of these planes with the non-level edges of the
terrain. On the level edges, we add enough Steiner points so that consecutive points are at
most δ sec θ units apart. We then construct a weighted directed graph G(V, E) in which each
node in V represents either a Steiner point or a vertex, and there is a directed link pq ∈ E if
and only if all of the following are true:

(i) p and q lie in a common face,

(ii) h(p) ≥ h(q), and

(iii) neither p nor q is a sharp vertex.

By Lemma 5.3, there is an SGDP from p to q. The weight of link pq is the length of such
an SGDP, i.e., ‖pq‖. In the final step of our preprocessing we compute a shortest path tree T
rooted at s using the Bushwhack algorithm (discussed in page 15). The Bushwhack algorithm
works for any distance metric that satisfies the following property: if e and e′ are two edges
from the same face, and a and b are two points on edge e, then edge e′ can be divided into two
sub-intervals A and B, where points in A have a shorter path from a than from b and points in
B have a shorter path from b than from a. This property holds for our distance metric (even
though an SGDP connecting two points in face f may leave f). The proof follows from Sun
and Reif [91], Lemmas 3 and 4, where they showed that this property holds for anisotropic
paths.

86

Query phase

To answer a query, we simply return the path from s to query point v in T if v ∈ V and v is
not a sharp vertex. If v is a sharp vertex, we return nothing since there is no SGDP from s to
v. Otherwise, v 6∈ V . In this case, we find the node u among those in V lying in the face(s)
containing v such that h(u) ≥ h(v), and the sum of ‖uv‖ and the length of the path from s to
u in T is minimum. Finally we return the corresponding path from s to v as an approximate
SGDP.

There is an important issue regarding the path returned by our algorithm. It is a path in
the graph augmented by vertex v. To obtain an actual path on the terrain we must replace
each link ab in the path by an SGDP of the same length, which is possible by the definition of
the links of the graph. Such an SGDP is not unique if ab is steep (Figure 5.3(a)), but it is easy
to compute one such path. In the case where neither a nor b is locally sharp in their common
face f , we can even compute an SGDP from a to b in f with the minimum possible number of
bends (i.e., with no more bends than any other SGDP from a to b in f). Note, however, that
the problem of minimizing the total number of bends in an SGDP is NP-hard, as we will see
in Section 5.6.

5.4.2 Correctness and analysis

The proof of correctness follows an approach similar to the one in Section 4.3.2: we show that
an ideal SGDP P from s to any point v in the terrain is approximated by a path P ′ from s to
v in the augmented graph Gv(Vv, Ev) constructed as follows. We first add v to graph G, and
then add to this graph a link uv with weight ‖uv‖ for every u ∈ V such that u and v lie in a
common face, and h(u) ≥ h(v).

Let σP = (s = p0, p1, p2, . . . , pk, v = pk+1) be an ordered subsequence of the nodes in P
such that (a) for each i ∈ [0, k], the segments in-between pi and pi+1 lie in a common face fi,
and (b) for each i ∈ [0, k − 1], the segment exiting from pi+1 does not lie in fi. Note that pi

and pi+1 are two different boundary points of face fi for all i ∈ [0, k − 1], and pk and pk+1 are
two different points of face fk (pk+1 can be an interior point of fk). For all i ∈ [0, k], the part
of P between pi and pi+1 remains in fi. Let ei be an edge of the terrain through pi for all
i ∈ [1, k] (ei can be any edge through pi if pi is a vertex).

We construct a node sequence P ′ = (s = p′0, p
′
1, p

′
2, . . . , p

′
k, v = p′k+1) as follows: for each

i ∈ [1, k], let p′i = pi if pi is a vertex of the terrain; otherwise, let p′i be the nearest point from
pi in V ∩ ei such that h(p′i) ≥ h(pi). We will first prove in Lemma 5.7 that this node sequence
defines a path in Gv.

Lemma 5.5. For all i ∈ [0, k], h(p′i) ≥ h(p′i+1).

Proof. We have h(p′i) ≥ h(pi) and h(pi) ≥ h(pi+1) as in the proof of Lemma 4.1, even though
both pi and p′i are defined differently here. This lemma then follows from the rest of the proof
of Lemma 4.1.

Lemma 5.6. For all i ∈ [0, k + 1], p′i is not a sharp vertex.

87

Proof. None of p′0 = s and p′k+1 = v are sharp vertices because both the segments sp1 and
pkv are gently descending. For each i ∈ [1, k], if p′i is a sharp vertex, then p′i is either the
unique topmost vertex or the unique bottommost vertex in all incident faces. Therefore, either
h(p′i−1) < h(p′i) > h(p′i+1), or h(p′i−1) > h(p′i) < h(p′i+1). Both of these are impossible by
Lemma 5.5. So p′i is a not sharp vertex.

Lemma 5.7. Node sequence P ′ defines a path in Gv.

Proof. It is sufficient to show that p′ip
′
i+1 ∈ Ev for all i ∈ [0, k]. For i ∈ [0, k − 1], since p′i and

p′i+1 are boundary points of face fi by definition, h(p′i) ≥ h(p′i+1) by Lemma 5.5, and neither p′i
nor p′i+1 is a sharp vertex by Lemma 5.6, it follows from the construction that p′ip

′
i+1 ∈ E ⊆ Ev.

The case i = k is similar except that p′k and v = p′k+1 are points (i.e., not boundary points) in
face fk, and that p′kv ∈ Ev.

Lemma 5.8. For all i ∈ [1, k], ‖pip
′
i‖ ≤ ǫh

4n .

Proof. Using the current definition of δ in the proof of Lemma 4.3, we have: |pip
′
i| ≤ δ sec θ for

all i. Observation 5.1(iii) then implies:

‖pip
′
i‖ ≤ |pip

′
i| sec ψ ≤ δ sec θ sec ψ =

ǫh

4n
,

which completes the proof.

Lemma 5.9. The algorithm returns a (1 + ǫ)-SGDP.

Proof. Let P and P ′ be respectively an ideal SGDP and a node sequence in Gv as described
above. Our algorithm finds a shortest path P ′′ in Gv, which provides a gently descending path
of the same length. Since P ′ is a path in Gv (Lemma 5.7), the length of P ′′ is at most the
length of P ′, and therefore it is sufficient to prove that the length of P ′ is at most (1+ ǫ) times
the length of P .

When k = 0, both P and P ′ have length ‖sv‖, which proves the lemma trivially. When
k > 0, the length of P ′ is equal to:

k
∑

i=0

‖p′ip′i+1‖ ≤
k

∑

i=0

(

‖p′ipi‖ + ‖pipi+1‖ + ‖pi+1p
′
i+1‖

)

(Observation 5.1(ii))

=
k

∑

i=0

‖pipi+1‖ + 2
k

∑

i=1

‖pip
′
i‖ (Observation 5.1(i))

≤
k

∑

i=0

‖pipi+1‖ +
ǫhk

2n
(Lemma 5.8)

<
k

∑

i=0

‖pipi+1‖ + ǫh ,

since k < 2n. Now, because k > 0, we have:

h ≤ |p0p1| ≤
k

∑

i=0

|pipi+1| ≤
k

∑

i=0

‖pipi+1‖

88

by Observation 5.1(iii). Therefore,
∑k

i=0 ‖p′ip′i+1‖ < (1+ ǫ)
∑k

i=0 ‖pipi+1‖. So, the length of P ′

is at most (1 + ǫ) times the length of P .

Lemma 5.10. Let X = L
h sec θ sec ψ. Graph G has O

(

n2X
ǫ

)

nodes in total, and O
(

nX
ǫ

)

nodes

along any edge of the terrain.

Proof. The proof is the same as that of Lemma 4.5, except that we use δ and X defined
here.

Theorem 5.1. Let X = L
h sec θ sec ψ, where L is the length of the longest edge, h is the

smallest distance of a vertex from a non-incident edge in the same face, θ is the largest acute
angle between a non-level edge and a vertical line, and ψ is the angle of steepness. Given a

vertex s, we can preprocess the terrain in O
(

n2X
ǫ log

(

nX
ǫ

)

)

time after which we can determine

a (1 + ǫ)-approximate SGDP from s to any query point v in:

(i) O(nd) time if v is a vertex or a Steiner point, and

(ii) O
(

n
(

d + X
ǫ

))

time otherwise.

Proof. The approximation factor follows from Lemma 5.9.

The preprocessing time of our algorithm is the same as the running time of the Bushwhack

algorithm, which is O(|V | log |V |) = O
(

n2X
ǫ log

(

nX
ǫ

)

)

by Lemma 5.10.

During the query phase, if v is a vertex or a Steiner point, the approximate path is in the
tree T . Because the tree has height O(n), it takes O(n) time to trace the path in the tree.
Tracing the corresponding path in the terrain takes O(nd) time by Lemma 5.3. The total query
time is thus O(nd) in this case. If v is neither a vertex nor a Steiner point, v is an interior point
of a face or an edge of the terrain. The last intermediate node u on the path to v is a vertex
or a Steiner point that lies on the boundary of a face containing v. If v is interior to a face
[an edge], there are 3 [respectively 4] edges of the terrain on which u can lie. Thus there are
O

(

nX
ǫ

)

choices for u by Lemma 5.10, and we try all of them to find the shortest approximate
distance from s to v. Finally tracing the corresponding path in the terrain takes O(nd) time
by Lemma 5.3. The total query time in this case is O

(

nX
ǫ

)

+ O(nd) = O
(

n
(

d + X
ǫ

))

.

Corollary 5.1. If the answer to a query is the length of an SGDP (rather than the SGDP
itself), the query times for Cases (i) and (ii) of Theorem 5.1 become O(1) and O

(

nX
ǫ

)

, respec-
tively.

5.5 Approximation using non-uniform Steiner points

Our second approximation algorithm (which is similar to the algorithm in Section 4.4) differs
from the first one only in the way Steiner points are placed. We follow the same scheme as
in Section 4.4, except that the parameters δ1 and δ2 take into account the steepness. More

89

precisely, we place Steiner points in two phases. First, on every edge e = v1v2 we place Steiner
points at points p ∈ e such that |pq| = δ1(1 + δ2)

i for q ∈ {v1, v2} and i ∈ {0, 1, 2, . . .}, where

δ1 =
ǫh

6n
cos ψ

and

δ2 =
ǫh

6L
cos ψ .

In the second phase we slice the terrain with a level plane through every Phase 1 Steiner point
and every vertex, and add Steiner points at the points where these planes intersect the terrain.
We then construct a weighted directed graph G(V, E), and then a shortest path tree T rooted
at s in the same manner as in Section 5.4.1. The queries are handled in the same manner as
in Section 5.4.1.

5.5.1 Correctness and analysis

For the proof of correctness, we follow the same approach used in Section 5.4.2: we show that
an ideal SGDP P from s to any point v in the terrain is approximated by a path P ′ from s to v
in the augmented graph Gv(Vv, Ev) constructed as follows. We first add v to graph G, and then
add to this graph a link uv with weight ‖uv‖ for every u ∈ V such that u and v lie in a common
face, and h(u) ≥ h(v). We then construct a node sequence P ′ = (s = p′0, p

′
1, p

′
2, . . . , p

′
k, v =

p′k+1) as in Section 5.4.2.

Lemma 5.11. For all i ∈ [0, k], h(p′i) ≥ h(p′i+1).

Proof. The proof is exactly the same as in Lemma 5.5.

Lemma 5.12. For all i ∈ [0, k + 1], p′i is not a sharp vertex.

Proof. The proof is exactly the same as in Lemma 5.6.

Lemma 5.13. Node sequence P ′ defines a path in Gv.

Proof. The proof is exactly the same as in Lemma 5.7.

For the rest of the lemmas, we rely on the same definition of vicinity of a vertex as in
Section 4.4 except that we use δ1 defined here.

Lemma 5.14. For all i ∈ [1, k] such that pi is not inside a vertex vicinity, ‖pip
′
i‖ < ǫ

6 |pi−1pi|.

Proof. Using the same argument as in Lemma 4.8 but with δ2 defined here, we have: |p′ip′′i | <
δ2 |pi−1pi| · L

h . The lemma then follows from Observation 5.1(iii) and the definition of δ2.

Lemma 5.15. For all i ∈ [1, k] such that pi is on or inside a vertex vicinity, ‖pip
′
i‖ ≤ ǫh

6n .

Proof. Using the same argument as in Lemma 4.9 but with δ1 defined here, we have: |pip
′
i| ≤ δ1.

The lemma then follows from Observation 5.1(iii) and the definition of δ1.

90

Lemma 5.16. The algorithm returns a (1 + ǫ)-SGDP.

Proof. As in the proof of Lemma 5.9, it is sufficient to prove that the length of P ′ is at most
(1 + ǫ) times the length of P , where P and P ′ are respectively an ideal SGDP and a node
sequence in Gv as described above.

When k = 0, both P and P ′ have length ‖sv‖, which proves the lemma trivially. When
k > 0, the length of P ′ is equal to:

k
∑

i=0

‖p′ip′i+1‖ ≤
k

∑

i=0

‖pipi+1‖ + 2
k

∑

i=1

‖pip
′
i‖ (as in the proof of Lemma 5.9)

<
k

∑

i=0

‖pipi+1‖ + 2
k

∑

i=1

(

ǫ

6
‖pi−1pi‖ +

ǫh

6n

)

(by Lemmas 5.14 and 5.15)

=
k

∑

i=0

‖pipi+1‖ +
ǫ

3

k
∑

i=1

‖pi−1pi‖ +
ǫhk

3n

≤
(

1 +
ǫ

3

)

k
∑

i=0

‖pipi+1‖ +
ǫhk

3n

<
(

1 +
ǫ

3

)

k
∑

i=0

‖pipi+1‖ +
2ǫh

3
,

since k < 2n. Now, because k > 0, we have:

h ≤ |p0p1| ≤
k

∑

i=0

|pipi+1| ≤
k

∑

i=0

‖pipi+1‖

by Observation 5.1(iii). So,
∑k

i=0 ‖p′ip′i+1‖ < (1 + ǫ)
∑k

i=0 ‖pipi+1‖, and therefore, the length
of P ′ is at most (1 + ǫ) times the length of P .

Lemma 5.17. Let X ′ = L
h sec ψ. Graph G has O

(

n2X′

ǫ log
(

nX′

ǫ

))

nodes in total, and

O
(

nX′

ǫ log
(

nX′

ǫ

))

nodes along any edge of the terrain.

Proof. The proof is the same as that of Lemma 4.11, except that we use δ1, δ2 and X ′ defined
here.

Theorem 5.2. Let X ′ = L
h sec ψ, where L is the length of the longest edge, h is the smallest

distance of a vertex from a non-incident edge in the same face, and ψ is the angle of steepness.

Given a vertex s, we can preprocess the terrain in O
(

n2X′

ǫ log2
(

nX′

ǫ

))

time after which we

can determine a (1 + ǫ)-approximate SGDP from s to any point v in:

(i) O(nd) time if v is a vertex or a Steiner point, and

(ii) O
(

nd + nX′

ǫ log
(

nX′

ǫ

))

time otherwise.

91

Proof. The proof is the same as in Theorem 5.1 except that we use Lemmas 5.16 and 5.17
instead of Lemmas 5.9 and 5.10, respectively.

Corollary 5.2. If the answer to a query is the length of an SGDP, the query times for Cases (i)

and (ii) of Theorem 5.2 become O(1) and O
(

nX′

ǫ log(nX′

ǫ)
)

, respectively.

5.6 Hardness of SGDPs with few bends

We now turn to our hardness results. In this section we show using a reduction from 3-SAT
that it is NP-hard to decide if there exists a gently descending path of length at most L that
has at most k bends. The “big picture” of our construction follows immediately from the idea
of Canny and Reif [24], who proved that finding a shortest path among obstacles in 3D is NP-
hard. However, our gadgets are different from theirs because the paths in the SGDP problem
lie on a 2D surface.

From the given 3-SAT instance f , our reduction constructs an instance of the SGDP prob-
lem consisting of a terrain that contains (i) a source vertex s, (ii) a destination vertex t, and
(iii) faces bounded by axis-parallel edges, possibly with an axis-parallel rectangular hole. The
angle of steepness ψ is part of the input to the SGDP instance. Note that it is trivial to
triangulate each face of this terrain in constant time, to be consistent with the definition of
the SGDP problem. But we avoid doing so because the “extra” non-axis-parallel edges only
complicate the description.

We will start with an overview of our construction, where we will mention the functions of
the main gadgets used in the construction. Then we will go into the details of our construction,
describing the structures of all the gadgets in a bottom-up manner, i.e., beginning with the
simplest gadgets and then gradually building the more “complicated” ones.

5.6.1 Overview

Given the 3-SAT instance f , we first construct a polynomial sized terrain that has exactly 2n

SGDPs with a limited number of bends from s to t. These 2n paths are parallel to each other
in most of the faces in the terrain, where they form a Path Bundle. Each path in the Path
Bundle represents one of the 2n possible truth assignments for the n variables. We then add
m Clause Filters in series along the Path Bundle (as shown in Figure 5.6), one for each clause
in f . As the name suggests, a Clause Filter “blocks” a path in the Path Bundle if the truth
assignment corresponding to the path does not satisfy the clause corresponding to the filter.
Inside each Clause Filter the Path Bundle splits into three and passes through three Literal
Filters, one for each literal in the corresponding clause. A Literal Filter has an analogous
function: it “blocks” a path if the truth assignment corresponding to the path does not satisfy
the literal corresponding to the filter. A path in the Path Bundle that “survives” all the filters
gives a solution to f .

92

���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������

���������������������������
���������������������������
���������������������������

Path
Bundle

Tripler

Tripler

Literal
Filter

Clause
Filter

Reverse

Figure 5.6: Clause Filters along the Path Bundle.

93

x
z

y
p3

f0

f2

e0

e2

e3

e1

f1

p′2
p2

p0

p1

p′3

(a)

p1

p2 p′2

p0

p3 p′3

y

x e0

e1

e2

e3

f2

f1

f0

(b)

Figure 5.7: (a) A Splitter, and (b) its unfolded view.

5.6.2 Elementary gadgets

All the gadgets used in our construction are made up of two elementary gadgets. The first one
is a Splitter which “splits” an SGDP into two SGDPs with exactly two bends each.

A Splitter consists of three faces bounded by edges parallel to the x-axis, as shown in
Figure 5.7(a). Faces f0 and f2 are horizontal, and the slope of face f1 is such that the angle
between the two critical directions in this face is π

2 . This ensures that if we unfold the faces
onto the xy-plane (as shown in Figure 5.7(b)), each of the critical directions in f1 will make an
angle π

4 with the direction of the y-axis. This is possible when, for example, face f1 is vertical
and the angle of steepness ψ is π

4 . (Note that our definition of a terrain in Section 2.1 allows
vertical faces.) Our construction uses these particular values for the slope of f1 and ψ because
they make the construction simple. Later on in Section 5.6.7 we will mention how to adapt
our construction when vertical faces are not allowed.

To understand how a Splitter works, take any point p0 ∈ e0 as in Figure 5.7(a), and then
construct two different paths (p0, p1, p2, p3) and (p0, p1, p

′
2, p

′
3) as follows. Let p1 ∈ e1 be the

point such that p0p1 is parallel to the y-axis. Let p2 and p′2 be two different points in e2 such
that p1p2 and p1p

′
2 are two different critical directions in f1 from p1. Finally, let p3 and p′3 be

the points in e3 such that both p2p3 and p′2p
′
3 are parallel to the y-axis. Now observe that the

SGDP from p0 to any point in e3 must leave e0 along the direction parallel to the y-axis, and
must reach e3 in the same direction. It then follows that both of the paths (p0, p1, p2, p3) and
(p0, p1, p

′
2, p

′
3) are SGDPs, and they have the same length. Moreover, each of the paths has

two bends. It also follows that these paths are shorter than the SGDP from p0 to any point in
e3 that lies outside p3p

′
3. Also, the SGDP from p0 to any point in the interior of p3p

′
3 has at

94

least three bends—the gray segments in Figure 5.7(b) form such an SGDP. Thus from p0 to
edge e3 there are exactly two SGDPs with at most two bends each, and this is true for any the
position of p0 along e0. Therefore, each SGDP from a point in edge e0 to edge e3 is split into
two SGDPs with two bends each, which justifies the gadget’s name. Note that using the same
gadget, two SGDPs from edge e0 to edge e3 can be merged together to reach a single point in
e3, where each of the SGDPs has two bends.

The gap between the two SGDPs in f2 (i.e., the length of segment p3p
′
3) plays an important

role in our construction, and we will need Splitters with many different gaps. Because the gap
is twice the distance between e1 and e2, it is easy to construct a Splitter with any desired gap.

x
z

y

e0

e1

(a)

y

x e0

e1

(b)

Figure 5.8: (a) A Blocker, and (b) its 2D representation.

The other elementary gadget is a Blocker, which is a pyramid with an axis-parallel rect-
angular base in a horizontal face. A base of the pyramid always lies inside a face bounded by
edges parallel to the x-axis, as shown in Figure 5.8. If we want to trace an SGDP from e0

to e1, we must follow a segment in the direction of the y-axis that does not go through the
Blocker. If the segment “tries” to go through the Blocker, we must travel around or over the
pyramid, which costs more in terms of length and number of bends. (Note that we can also
define a Blocker as an axis-parallel rectangular hole in the terrain.)

For the ease of discussion in the rest of this section, we unfold the terrain onto the xy-plane.
We will use a shaded rectangles as in Figure 5.8(b) to represent a Blocker.

5.6.3 The Path Bundle and its labeling

Given the 3-SAT instance f , we first construct as follows a polynomial sized terrain that has
exactly 2n SGDPs with a limited number of bends. Let s = (0, 0), and t be a point on the
positive side of the y-axis. Add n Splitters near s and n Splitters near t as shown in Figure 5.9,
so that we have from s to t exactly 2n SGDPs with 4n bends each. In the middle face of the
terrain in Figure 5.9, all these 2n paths are distinct, parallel to the y-axis and equidistant from
the nearest paths in the sequence. This sequence of paths forms the Path Bundle.

95

y

x

t

s

000111

Figure 5.9: The Path Bundle in the initial terrain (n = 3).

The paths in the Path Bundle are labeled with the binary representations of the integers
from 0 to 2n − 1 inclusive, from right to left as in Figure 5.9. More precisely, the ith path
from the right in the figure is labeled with the binary representation of i, where the 0th path
is the rightmost one. As we have mentioned before, each of these paths represents one possible
truth assignment for the n variables in f . More precisely, using the convention that the least
significant bit is the 0th bit, the ith bit in the label represents the “value” of bi. For example,
when n = 4, the Path Bundle contains 16 paths, and the third path from the right has the
label 0010, which represents the truth assignment b3 = 0, b2 = 0, b1 = 1 and b0 = 0.

In the subsequent figures, a set of closely-packed “parallel” paths as in Figure 5.9 will denote
the Path Bundle; the number of such paths in a figure is not important unless n is mentioned
in the caption.

5.6.4 Intermediate gadgets

We will soon add more gadgets in the middle face of the terrain in Figure 5.9. We will now
describe all those gadgets, starting in this section with three intermediate gadgets that consist
of a constant number of elementary gadgets.

A Tripler splits the Path Bundle into three non-overlapping copies of the bundle. By “non-
overlapping” we mean the three copies are disjoint in their x-extent. Each of the three copies

96

(a)

(b)

Figure 5.10: (a) A Tripler and (b) a Reverse Tripler.

97

of the Path Bundle contains the labeled paths in their original ordering. A Tripler consists of
two Splitters and a Blocker as shown in Figure 5.10(a).

A Reverse Tripler merges three copies of the Path Bundle made by a Tripler into one. It
consists of two Splitters and two Blockers as shown in Figure 5.10(b). Note that a Reverse
Tripler brings together those paths in the copies of the bundle that have a common label.
Triplers and Reverse Triplers come in pairs, as shown in Figure 5.6.

f

Figure 5.11: A Shuffler.

A Shuffler makes a perfect shuffle of the paths in the Path Bundle, as shown in Figure 5.11.
To be precise, each of the leftmost 2n−1 paths in the bundle goes in-between a pair of consecutive
paths in the rightmost 2n−1 paths in such a way that:

(i) no two paths from the left half become consecutive,

(ii) the rightmost path remains the rightmost one, and

(iii) the relative order of the paths in each half of the bundle is maintained.

A Shuffler consists of two Splitters and three Blockers.

Note that none of our gadgets except a Shuffler changes the relative order of the paths in
the Path Bundle. This is true even for the gadgets containing Shufflers—we will describe them
soon.

Another important issue is that a Shuffler makes the x-extent of the Path Bundle smaller,
by halving the gap between every pair of consecutive paths. As a result, after we add each
Shuffler, we will have to “adjust” the sizes of all the gadgets that come after this Shuffler on
the Path Bundle.

Observation 5.2. After going through a Shuffler, the ith path in the Path Bundle becomes the
jth path, where j is the integer obtained by rotating the n-bit binary representation of i to the
left by one bit.

98

It follows from the above observation that after the Path Bundle goes through a Shuffler,
every path whose label has a one [zero] in the second most significant bit appears at the left
[respectively right] half of the modified bundle. It then follows by induction that after the
original Path Bundle goes through i Shufflers for some i < n, a path whose label has a one
[zero] in the (n− 1− i)th most significant bit appears at the left [respectively right] half of the
bundle at the “output”.

5.6.5 Main gadgets

There are two types of main gadgets: Literal Filters and Clause Filters. We have already
mentioned their functions in Section 5.6.1.

������������
������������
������������

������������
������������
������������

������������
������������
������������

������������
������������
������������

������������
������������
������������

������������
������������
������������

������������
������������
������������

������������
������������
������������

����
����
����

����
����
����

Shuffler

Figure 5.12: The structure of the Literal Filter for b̄2 (n = 4).

A Literal Filter represents a literal in a clause. It consists of a sequence of n Shufflers and
a Blocker as shown in Figure 5.12. The Path Bundle entering a Literal Filter passes through
all the n Shufflers in sequence, and the Blocker obstructs half of the paths in the Path Bundle
before they enter one of the Shufflers. To be more precise, if the literal represented by the
Literal Filter is b̄i, the Blocker obstructs the leftmost 2n−1 paths in the Path Bundle right
before they enter the (n− i)th Shuffler (note that “1th Shuffler” is the first one). On the other
hand, if the literal is bi, the Blocker obstructs the rightmost 2n−1 paths right before they enter
the same Shuffler. For example, the Literal Filter in Figure 5.12 corresponds to the literal b̄2

(n = 4).

A Clause Filter represents one of the m clauses. It consists of a Tripler, a Reverse Tripler,
and three Literal Filters, one for each literal in the corresponding clause. See Figure 5.6. Each
of the three copies of the Path Bundle inside a Clause Filter goes through one of the Literal
Filters.

Because the Path Bundle passing through a Literal Filter goes through n Shufflers in
sequence, it follows from Observation 5.2 that the Literal Filter keeps the the relative order of
the paths in the Path Bundle unchanged. Clearly, a Clause Filter also maintains the order.

99

5.6.6 Correctness

To prove that deciding the existence of a gently descending path of length at most L that has
at most k bends is NP-hard, we will have to complete our reduction by determining the values
of L and k. Let L be the length of any path in the Path Bundle when the Blockers from all
Literal Filters are temporarily removed so that no paths in the Path Bundle is blocked.

Lemma 5.18. Any path P in the Path Bundle has length L, and has k = 4mn + 8m + 4n
bends, provided that P is not blocked by a Blocker in a Literal Filter. Moreover, no s-t path in
the terrain is better than P in terms of both length and number of bends.

Proof. For the number of bends, we will first count the number of Splitters used by P . A
Literal Filter contains n Shufflers, each of which contains of two Splitters. So, P goes through
2n Splitters in a Literal Filter. In every Clause Filter, P goes through 2 Splitters in the
Tripler, 2n Splitters in a Literal Filter and 2 Splitters in the Reverse Tripler. The total number
of Splitters used in all Clause Filters is m(2n+4) = 2mn+4m. There are n Splitters before the
Path Bundle, and after n after it. So the total number of Splitters used by P is 2mn+4m+2n.
The number of bends then follows since in each Splitter P has two bends.

The length of P follows from the definition of L, and from the fact that all paths in the
Path Bundle have the same length by construction. The last part follows from the construction
of the elementary gadgets.

Lemma 5.19. A path P in the Path Bundle passes through the Literal Filter for a literal l in
f iff either:

(i) the ith bit of the label of P is one, and l = bi, or

(ii) the ith bit of the label of P is zero, and l = b̄i.

Proof. In this Literal Filter, the Blocker appears right before the (n− i)th Shuffler. When the
ith bit of the label of P is one, it follows from Observation 5.2 that in the Path Bundle at this
place, P is one of the 2n−1 leftmost paths. By construction, the Blocker does not obstruct this
position of the Path Bundle iff l = bi. The proof is similar when the ith bit of the label of P
is zero.

Lemma 5.20. A path P in the Path Bundle passes through all the Clause Filters iff the truth
assignment corresponding to the label of P satisfies f .

Proof. ⇒: If P passes through all the Clause Filters, it passes through at least one Literal
Filter in every Clause Filter. It then follows from Lemma 5.19 that the corresponding literals
in f are satisfied by the truth assignment corresponding to the label of P . Since at least one
literal in every clause in f is satisfied, f is satisfied by the truth assignment.

⇐: It is sufficient to show that if P does not pass through the Clause Filter for Ci for some
i ∈ [0, m − 1], the truth assignment corresponding to the label of P does not satisfy f . In this
case, P does not pass through any of the three Literal Filters in the Clause Filter for Ci by
construction. Lemma 5.19 then implies that the corresponding literals in f are not satisfied
by the truth assignment. So, the truth assignment does not satisfy Ci, and therefore does not
satisfy f .

100

Lemma 5.21. Our construction can be described using O(mn) bits, and the construction takes
O(mn) time to build.

Proof. We will first measure, in the unfolded terrain, the lengths (along the coordinate axes)
of each gadget in terms of the gap between two consecutive paths in the Path Bundle inside
that gadget. Since a Shuffler halves the gap between two consecutive paths in the bundle, we
will measure in terms of the gap in the “narrower” bundle for a Shuffler.

First observe that the smallest distance between any two “features” of a gadget is half
the gap between two consecutive paths in the Path Bundle leaving the gadget. This smallest
measure appears either as the distance of a vertex of the Blocker from the nearest path in
the Path Bundle (in Figures 5.10(a), 5.10(b), 5.11 and 5.12), or as the distance between the
parallel edges of the “nearest” Splitters at the two ends of the Path Bundle in Figure 5.9.

It can be shown that for every gadget, the distance along each of the coordinate axes
between every pair of features (in terms of the gap between two consecutive paths in the Path
Bundle in that gadget) is a fraction of the form r

2 , where r is an integer. Clearly r is an O(n)
bit integer for all the gadgets. In fact, r is equal to one for the “smallest measures” mentioned
above, and is an even number for all other cases except that it is an odd number for the distance
between the parallel edges of f in the Shuffler in Figure 5.11.

Now we will switch to a “global” measure. Since each Shuffler halves the gap between two
consecutive paths in the bundle, the gap is the smallest (in the whole construction) at the end
of the Path Bundle in Figure 5.9. Let the measure of this smallest gap be two units (because
it follows from the above paragraph that choosing “two units” instead of “one unit” makes
the gap between any two “features” an integer). The largest gap between two consecutive
paths in the bundle is 2O(mn) units at the beginning of the Path Bundle in Figure 5.9. So for
every gadget, the distance (along each of the coordinate axes) between every pair of features
is 2O(mn) × 2O(n) = 2O(mn) units.

Finally, the number of elementary gadgets used in our construction is O(mn) because there
are m Clause filters, and each of these filters has O(n) elementary gadgets. Since O(mn) ×
2O(mn) is 2O(mn), the unfolded terrain can be described using 2O(mn) bits. The bound holds for
the description length of the original terrain (i.e., the one before folding) because each non-level
face of the original terrain is vertical.

The lemma then follows since ψ = π
4 can be specified using a constant number of bits when

expressed as a multiple of π.

Theorem 5.3. Deciding if there exists a gently descending path of length at most L that has
at most k bends is NP-hard.

Proof. Lemma 5.21 implies that ours is a polynomial-time reduction. The theorem then follows
from Lemmas 5.18 and 5.20, and the NP-hardness of 3-SAT [48].

5.6.7 Constructing a terrain without vertical faces

We assumed so far that ψ = π
4 and the middle face of a Splitter (i.e., face f1 in Figure 5.7) is

vertical. The classical definition of a terrain does not allow vertical faces, and in that case, we

101

adapt our construction of a Splitter as follows. We relax the restriction that the angle between
the two critical directions in f1 is π

2 . To keep the description length of a Splitter limited, we
ensure that:

(i) the ratio of the distance of e2 from p1 and the distance
|p2p′

2
|

2 is a rational number, and

(ii) the coordinates of e1 and e2 are rational numbers both before and after unfolding f1 onto
the xy-plane.

We then scale the coordinate system appropriately to make all the coordinates integer.

p1

p′2

r q

p2

ψ

Figure 5.13: Determining the values of ψ, and the slope of f1 when f1 is not vertical.

We choose the value of ψ, and the slope of f1 as follows. Let ψ = arccos(4
13). Consider the

3D cone in Figure 5.13 that defines the steepness at point p1 of the 3D Splitter in Figure 5.7(a).
Let r be the midpoint of p2p

′
2, and q be the point on the level plane containing p2 (and p′2)

such that p1q is a vertical line. We choose the slope of f1 in such a way that |qr| = 3κ and
|p1q| = 4κ, thus |p1r| =

√
32 + 42 = 5κ, for some real number κ > 0. It follows from the value

of ψ = ∠qp1p
′
2 that |p1p2| = |p1p

′
2| = 13κ, and therefore, |rp2| = |rp′2| =

√
132 − 52 = 12κ.

The critical directions in f1 now make an angle greater than π
2 . Because the ratio |p1r|

|rp2| = 5
12 ,

all the y-coordinates in the unfolded terrain become integral multiples of (1
12)k′

, where k′ is the
total number of Splitters in the terrain. If we now “undo” unfolding, all the y-coordinates and
all the z-coordinates become integral multiples of (1

12 · 1
5)k′

. Since k′ is O(mn) (to be precise,
2mn + 4m + 2n, as shown in the proof of Lemma 5.18), multiplying all the coordinates with
(5 · 12)k′

makes them 2O(mn) bit integers.

By specifying the steepness using cos ψ (or sinψ or tanψ) instead of ψ in the input to the
SGDP algorithm, Theorem 5.3 holds even when vertical faces are not allowed in a terrain.

5.7 Hardness of SGDPs with limited total turn-angle

To show that deciding existence of a gently descending path of length at most L that has a total
turn-angle at most φ is NP-hard, we use the same construction we have used in Section 5.6.

102

Because the turn-angle is π
2 at every bend in each path of the Path Bundle in Section 5.6,

the following lemma holds in a straightforward manner:

Lemma 5.22. Any path P in the Path Bundle has length L, and has a total turn-angle φ =
(2mn + 4m + 2n)π, provided that P is not blocked by a Blocker in a Literal Filter. Moreover,
no s-t path in the terrain is better than P in terms of both length and total turn-angle.

Proof. The lemma follows from Lemma 5.18 since k · π
2 = (2mn + 4m + 2n)π.

Our second hardness result then follows:

Theorem 5.4. Deciding if there exists a gently descending path of length at most L that has
a total turn-angle at most φ is NP-hard.

Proof. The proof is the same as that of Theorem 5.3, except that we use Lemma 5.22 instead
of Lemma 5.3.

The argument in Section 5.6.7 implies that the above theorem holds even when vertical
faces are not allowed in a terrain.

5.8 Conclusion

In this chapter we have introduced the shortest gently descending path (SGDP) problem, and
have deduced some properties of SGDPs that led us to two easy-to-implement approximation
algorithms for SGDPs. Both of ours algorithms are based on the Steiner point approach.
Between a pair of points there can be many SGDPs with different number of bends. We have
shows using a reduction from 3-SAT that it is NP-hard to decide the existence of a gently
descending path that has a length at most L and has (i) at most k bends, or (i) a total turn-
angle at most φ. This result implies the hardness of the following two optimization problems:

(a) finding an SGDP that has either at most k bends, or a total turn-angle at most φ, and

(b) finding a gently descending path of length is at most L that has (i) fewest bends or (ii)
smallest total turn-angle.

The second problem may have significance in, say, robot motion planning, where L is the maxi-
mum distance the robot can cover without refueling/recharging, and the goal is to minimize the
number or the amount of turns made by the robot. Our hardness results apply to the shortest
anisotropic path problem, and provide the first such result for a well-studied cost model for
this problem.

The complexity of finding an SGDP is unknown even when we are given the sequence of faces
used by the path. In fact, the numerical issues in computing the exact SDP through a given
sequence of faces from a given source point to a given target point (discussed in Section 3.6)
applies also to SGDPs because the additional constraint disallowing a very steep descent does
not make the problem any easier.

103

We discussed a few properties of an SGDP in Section 5.3. We still do not know how the
bend angles of an SGDP are related to one another. A characterization of those angles, like the
one for SDPs in Chapter 3, may be helpful in identifying terrains for which the SGDP problem
is easily solvable. Such a characterization may also be helpful in finding a faster approximation
scheme. Of course, research in this latter direction will deserve attention only if a similar
approach for SDP proves to be successful.

We presented two (1 + ǫ)-approximation algorithms for SGDPs that are very similar to
our approximation algorithms in Chapter 4. The discussion in Section 4.5 regarding possible
extensions of our SDP algorithms applies to our SGDP algorithms in this chapter.

104

Chapter 6

Shortest Paths avoiding Forbidden

Subpaths

6.1 Introduction

In this chapter of the thesis we switch our focus from shortest paths on terrains to shortest
paths in graphs. Finding shortest paths in graphs is one of the most fundamental combinatorial
optimization problems. It is a more fundamental problem than the geometric shortest path
problem, and is used as a “black-box” in many algorithms for geometric shortest paths. For
example, all the terrain shortest path algorithms mentioned in this thesis that are based on
the Steiner point approach rely on graph shortest path algorithms.

It is natural both in geometric settings and in graphs to have certain subpaths that are
forbidden. For example, if we disallow sharp bends in a path on a terrain, all two-segment
paths with sharp bends in the terrain become forbidden. In this chapter deal with a similar
problem in graphs. More precisely, we study in this chapter the following variant of the graph
shortest path problem: given a weighted graph G(V, E), and vertices s and t, and given a set
X of forbidden paths in G, find a shortest s-t path P such that no path in X is a subpath of P .
We call paths in X exceptions, and we call the desired path a shortest exception avoiding path.
We allow an exception avoiding path to be non-simple, i.e., to repeat vertices and edges. In fact
the problem becomes hard if the solution is restricted to simple paths [94]. This problem has
been called the shortest path problem with forbidden paths by Villeneuve and Desaulniers [99].
Unlike them, we assume no a priori knowledge of X. More precisely, we can identify a forbidden
path only after failing in our attempt to follow that path. This variant of the problem has
not been studied before. It models the computation of shortest paths in optical networks,
described in more detail in the “Motivation” section below. Note that when we fail to follow a
path because of a newly discovered exception, we are still interested in a shortest path from s
to t as opposed to a detour from the failure point. This is what is required in optical networks,
because intermediate nodes do not store packets, and hence s must resend any lost packet.

This chapter presents an algorithm to compute shortest exception avoiding paths in the
model where exceptions are not known a priori. Our algorithm is generic and depends on a
(conventional) shortest path algorithm, such as Dijkstra’s algorithm in the case of non-negative

105

edge-weights. Dijkstra’s algorithm is a special case of a shortest path algorithm based on the
relaxation process (see Section 6.1.3), and we can use any shortest path algorithm based on this
process. The running time of our algorithm depends on the run-time of the specific relaxation-
based shortest path algorithm we use. Specifically, our algorithm takes O(k(n+m+T (n, m)))
time, where n = |V |, m = |E|, k is the number of exceptions in X, and T (n, m) is the run-time
of the relaxation-based shortest path algorithm. In particular, T (n, m) is n + m for directed
acyclic graphs, n log n+m for graphs with non-negative edge-weights, and nm for graphs with
negative edge-weights but no negative weight cycle.1

Our algorithm uses a vertex replication technique similar to the one used to handle non-
simple paths in other shortest path problems [39, 99]. The idea is to handle a forbidden path
by replicating its vertices and judiciously deleting edges so that one copy of the forbidden path
is missing its last edge and the other copy is missing its first edge. The result is to exclude
the forbidden path but allow all of its subpaths. The main challenge is that vertex replication
can result in an exponential number of copies of any forbidden path that overlaps the current
one. Villeneuve and Desaulniers [99] address this challenge by identifying and compressing the
overlaps of forbidden paths, an approach that is impossible for us since we do not have access
to X. Our new idea is to couple vertex replication with the “growth” of a shortest path tree.
By preserving certain structure in the shortest path tree we prove that the extra copies of
forbidden paths that are produced during vertex replication are immaterial. Our algorithm is
easy to implement, yet the proof of correctness and the run-time analysis are non-trivial.

6.1.1 Motivation

Our research on shortest exception avoiding paths was motivated by a problem in optical
network routing from Nortel Networks. In an optical network when a ray of light of a particular
wavelength tries to follow a path P consisting of a sequence of optical fibers, it may fail to reach
the endpoint of P because of various transmission impairments such as attenuation, crosstalk,
dispersion and non-linearities [51, 66]. This failure may happen even though the ray is able to
follow any subpath P ′ of P . This “non-transitive behavior” occurs because those impairments
depend on numerous physical parameters of the traversed path (e.g., length of the path, type
of fiber, wavelength and type of laser used, location and gain of amplifiers, number of switching
points, loss per switching point, etc.), and the effect of those parameters may be drastically
different in P than in P ′ [17]. Forbidden subpaths provide a straightforward model of this
situation.

We now turn to the issue of identifying forbidden paths. Because of the large number of
physical parameters involved, and also because many of the parameters vary over the lifetime
of the component [18], it is not easy to model the feasibility of a path. Researchers at Nortel
suggested a model whereby an algorithm identifies a potential path, and then this path is tried
out on the actual network. In case of failure, further tests can be done to pinpoint a minimal
forbidden subpath. Because such tests are expensive, a routing algorithm should try out as
few paths as possible. In particular it is practically impossible to identify all forbidden paths
ahead of time—we have an exponential number of possible paths to examine in the network.

1The algorithm for graphs with non-negative edge-weights appeared in our STACS paper (Ahmed and Lu-
biw [10]).

106

This justifies our assumption of having no a priori knowledge of the forbidden paths, and of
identifying forbidden paths only by testing feasibility of a path.

The shortest exception avoiding path problem may also have application in vehicle routing.
Forbidden subpaths involving pairs of edges occur frequently (“No left turn”) and can occur
dynamically due to rush hour constraints, lane closures, construction, etc. Longer forbidden
subpaths are less common, but can arise, for example if heavy traffic makes it impossible to turn
left soon after entering a multi-lane roadway from the right. A vehicle in a road network on the
slope of a mountain can encounter even longer forbidden paths because of various “mechanical”
constraints. For example, going up [or down] for a certain time period may be too stressful for
the engine [respectively, the brakes], and the time period may depend on dynamic factors like
speed of traffic flow. If we are routing a single vehicle it is more natural to find a detour from
the point of failure when a forbidden path is discovered. This is different from our model of
rerouting from s upon discovery of a forbidden path. However, in the situation when vehicles
are dispatched repeatedly from a service provider, our model does apply.

6.1.2 Preliminaries

We are given a directed graph G(V, E) with n = |V | vertices, m = |E| edges, and a weight
w(u, v) for every edge (u, v) ∈ E. We are also given a source vertex s ∈ V such that every
other vertex in G is reachable from s, a destination vertex t ∈ V , and a set X of paths in G.
The graph G together with X models a communication network, with edge-weights denoting
the physical lengths of the links, where a packet cannot follow any path in X because of the
physical constraints mentioned in Section 6.1.1. We assume that the algorithm can access the
set X of forbidden paths only by performing queries to an oracle. Each query is a path P ,
and the oracle’s response is either the confirmation that P is exception avoiding, or else an
exception x ∈ X that is a subpath of P and whose last vertex is earliest in P . Ties can be
broken arbitrarily. In our discussion we say “we try a path” instead of saying “we query the
oracle” because the former is more intuitive. In Section 6.6 we modify our algorithm for the
case of an oracle that returns any exception on a path (not just the one that ends earliest).
This requires more calls to the oracle but gives a faster run-time.

We want to find a shortest path from s to t that does not contain any path in X as a
subpath—we make the goal more precise as follows. A path is a sequence of vertices each
joined by an edge to the next vertex in the sequence. Note that we allow a path to visit
vertices and edges more than once. If a path does not visit any vertex more than once, we
explicitly call it a simple path. A simple directed path from vertex u to vertex v in G is called
a forbidden path or an exception if a packet cannot follow the path from u to v because of the
physical constraints. Given a set A of forbidden paths, a path (v1, v2, v3, . . . , vl) is said to avoid
A if (vi, vi+1, . . . vj) 6∈ A for all i, j such that 1 ≤ i < j ≤ l. A path P from s to t is called a
shortest A-avoiding path if the length of P is the shortest among all A-avoiding paths from s
to t. We will use the term “exception avoiding” instead of “X-avoiding” when A is equal to
X, the set of all forbidden paths in G.

We will use d to denote the largest degree of a vertex in G, k to denote the number of
exceptions in X, and L to denote the total size of all exceptions in X.

Although only the graphs with positive edge-weights are relevant to the applications of the
problem mentioned earlier, we will from now on use G to denote a more general graph—a

107

graph with no negative weight cycle. This is because, the “generic” algorithm we devise in this
chapter applies to this bigger class of graphs. We will later adapt this generic algorithm for
special classes of graphs, including those with positive edge-weights.

6.1.3 Relaxation

The process of relaxation [34, p. 585] forms the basis of many classical single-source shortest
path algorithms, in particular (i) the Bellman-Ford algorithm for graphs with no negative
weight cycle, (ii) Dijkstra’s algorithm for graphs with positive edge-weights, and (iii) the one
for directed acyclic graphs. The process starts with a temporary shortest path tree consisting
of a single vertex s, and then gradually makes the tree bigger and changes the tree if necessary,
until the tree converges to a shortest path tree rooted at s.

In more detail, the relaxation process maintains for every vertex v ∈ V an estimated distance
from s, denoted by d(v), which is never less than the shortest s-v distance. The process also
maintains for every vertex v a predecessor p(v), which points to the parent of v in the current
tree. The relaxation process is first initialized by setting d(s) = 0 and d(v) = ∞ for all
v ∈ V − {s}, and pointing p(v) to nil for all v ∈ V . The main step of the process is relaxing
an edge (u, v), which consists of testing whether the current estimated path from s to v can
be improved by going through u, and updating d(v) and p(v) accordingly. More precisely, if
d(v) > d(u) + w(u, v), then d(v) is set to d(u) + w(u, v) and p(v) is set to point to u; otherwise
d(v) and p(v) are kept unchanged. The process repeatedly relaxes the edges of the input graph
until d(v) is at most d(u) + w(u, v) for every edge (u, v). (Note that this is possible if and only
if the graph has no negative weight cycle.) At this point, d(v) is the actual shortest distance
from s to v for all v, and the sequence of predecessors originating at v runs backwards along a
shortest s-v path. Clearly, the array of all the predecessors in the graph represents a shortest
path tree rooted at s. The order in which the edges can be relaxed efficiently depends on the
input graph, and the main differences between the classical algorithms for the three mentioned
graph classes depend on this order.

Now consider a partial shortest path tree T ′ rooted at s, i.e., a tree T ′ rooted at s which
is a subtree of a shortest path tree rooted at s. When we are given T ′, the relaxation process
can “grow” T ′ into a shortest path tree in G if we use a slightly modified initialization step as
follows. For each vertex v ∈ T ′, we initialize d(v) to the length of the path from s to v in T ′

(which is the shortest s-v distance), and we point p(v) to the predecessor of v in T ′. For each
vertex v 6∈ T ′, we set d(v) = ∞ and point p(v) to nil.

Lemma 6.1. After the above initialization step, if we relax the edges of G until we have
d(v) ≤ d(u) + w(u, v) for every edge (u, v) ∈ E that is reachable from s, we obtain a shortest
path tree T rooted at s in G such that T ′ is a subgraph of T .

Proof. Since the estimated distances of the vertices in T ′ does not change after our initial-
ization step, the computed tree T has T ′ as a subgraph. Now consider a shortest path
(s = v0, v1, v2, . . . , vl) in Gi. One of the properties of relaxation [34, p. 587] is that d(v) is
never less than the shortest distance from s to v for all v ∈ V . Since d(s = v0) = 0, and
d(vi) ≤ d(vi−1) + w(vi−1, vi) for all i ∈ [1, k], it is easy to show using induction on i that d(vi)
is the actual shortest distance for all i.

108

6.1.4 Related work

A shortest s-t path in a directed acyclic graph can be computed in O(n + m) time by relaxing
the edges in a topological order of the first vertices (i.e., the “from” vertices) of the edges.
A shortest s-t path can be computed in O(n log n + m) time in a graph with non-negative
edge-weights using Dijkstra’s algorithm with a Fibonacci heap, and in O(nm) time in a graph
with no negative weight cycle using the Bellman-Ford algorithm. All these three algorithms
have linear space requirements, and are based on the relaxation process [34, Chapter 24].

We briefly mention other approaches to shortest paths (although we will not use them).
When the edge-weights in a graph are non-negative integers, the shortest s-t path problem can
be solved in deterministic O(m log log n) time and linear space if the graph is directed [96],
and in optimal O(m) time if the graph is undirected [95]. In many of these cases, there are
randomized algorithms with better expected run-times, as well as approximation schemes.
See Zwick [103] for a survey of shortest path algorithms, and Cabello [23], Goldberg and
Harrelson [49], Goldberg et al. [50] and Holzer et al. [59] for some of the more recent work.

Two recent papers on shortest paths in graphs address the issue of avoiding a set of forbidden
paths, assuming that all the forbidden paths are known a priori. The first paper gives a hardness
result. Szeider [94] shows, using a reduction from 3-SAT, that the problem of finding a shortest
simple exception avoiding path is NP-complete even when each forbidden path has two edges.
If the forbidden paths are not known a priori, the hardness result still applies to the case of
simple paths because the lack of prior knowledge of the forbidden paths only makes the problem
harder.

The second paper, by Villeneuve and Desaulniers [99], gives an algorithm for a shortest
(possibly non-simple) exception avoiding path for the case when all the forbidden paths are
known a priori. They preprocess the graph in O((n + L) log(n + L) + m + dL) time and
O(n+m+dL) space so that a shortest path from s to a query vertex can be found in O(n+L)
time. They first build a deterministic finite automaton (DFA) from the set of forbidden paths
using the idea of Aho and Corasick [12], which can detect in linear time whether a given path
contains any of the forbidden paths. They then “insert” the DFA into G by replicating certain
vertices of G in the manner introduced by Martins [39], and then build a shortest path tree
in this modified graph. Their algorithm cannot handle the case where the set of all forbidden
paths is not explicitly given. Our algorithm is strictly more general.

We now mention two problems that seem related to ours, but do not in fact provide solutions
to ours. The first one is maintaining shortest paths in a dynamic graph, i.e., where nodes or
edges may fail [41, 43, 57], or edge-weights may change (e.g., [25, 41, 42]). Forbidden paths
cannot be modeled by deleting edges or by modifying edge costs because all edges in a particular
forbidden path may be essential—see Figure 6.1 for an example. The second seemingly related
problem is finding the k shortest paths in a graph. This was the subject of Martins [39] who
introduced the vertex replication technique that we use in our algorithm. There is considerable
work on this problem, see Eppstein [45] for a brief survey. But the k shortest path problem
is again different from our situation because a forbidden subpath may be a bottleneck that is
present in all of the k shortest paths even for k ∈ Ω(2n/2), see Villeneuve and Desaulniers [99].

In the context of optical networks researchers have studied many theoretical problems. See
Ramaswami and Sivarajan [79] for details on optical networks, and Lee and Shayman [66]

109

and McGregor and Shepherd [68] for a brief survey of the theoretical problems that have been
investigated. In the previous work, the effect of physical constraints on paths in optical networks
is either not considered at all (e.g., Khuller et al. [62]), or simply modeled by a known constant
upper bound on the length of such a path (e.g., Gouveia et al [51], Lee and Shayman [66] and
McGregor and Shepherd [68]). To the best of our knowledge, none of the previous work on
shortest paths in optical networks considers the fact that it is practically infeasible to know a
priori all the forbidden paths in the network, i.e., all the constraints in X. We handle the issue
of physical constraints from a different and much more practical perspective.

6.2 A generic algorithm for a shortest s-t path

s

a

b

c

d

e t

22

3

22

2

2

3

2

(a)

s

a

b

c

d

e t

22

3

22

2

2

3

2

b′

a′

(b)

Figure 6.1: (a) Shortest paths and (b) shortest x-avoiding paths in a graph, where x =
(s, a, b, t).

In our algorithm we begin with a shortest path tree rooted at s, ignoring the exceptions.
We then “try out” the path from s to t in the tree. If the path is free of exceptions, we are done.
Otherwise, to take the newly discovered exception into account, we modify the graph using
path replication as described in Section 6.1, and we modify the shortest path tree to match.
In general, we maintain a modified graph and a shortest path tree in the graph that gives a
shortest path in the original graph from s to every other vertex avoiding all the currently-
known exceptions. We will first illustrate the idea with an example. Consider the graph G
in Figure 6.1(a), where the integers denote edge-weights, and the dashed arrow marks the
forbidden path x = (s, a, b, t). Note that for simplicity we have used undirected edges in the
figure to denote bidirectional edges. It is not hard to see that P = (s, c, a, b, t) is the shortest
x-avoiding path from s to t. To find P , we first construct a shortest path tree rooted at s
(marked using the heavy edges in Figure 6.1(a)), and then try the path (s, a, b, t) in the tree.
The path fails because it contains x, so we use a vertex replication technique similar to the
one by Martins [39] to make duplicates of vertices a and b and delete edges (s, a′) and (b, t),
as shown in Figure 6.1(b). We then construct a shortest path tree rooted at s (marked using
the heavy edges in Figure 6.1(b)) in the modified graph, and try the path (s, c, a′, b′, t) which
“represents” the path P in G. We are done if x is the only forbidden path in G. Note that
this approach can double the number of undiscovered forbidden paths. Suppose y = (c, a, b)

110

is another forbidden path in G. We have two copies of y in the modified graph: (c, a, b) and
(c, a′, b′), and we have to avoid both of them. Our solution to this doubling problem is to
“grow” the shortest path tree in such a way that at most one of these two copies is encountered
in future. Our algorithm is as follows:

construct the shortest path tree T0 rooted at s in G0 = G;1

let i = 1;2

send a packet from s to t through the path in T0;3

while the packet fails to reach t do4

let xi be the exception that caused the failure;5

construct Gi from Gi−1 by replicating the intermediate vertices of xi and then6

deleting selected edges;
construct the shortest path tree Ti rooted at s in Gi using Ti−1;7

send a packet from s to t through the path in Ti;8

let i = i + 1;9

end10

In the above algorithm, the only lines that need further discussion are Lines 6 and 7; details
are in Sections 6.2.1 and 6.2.2 respectively. In the rest of the chapter, whenever we focus on a
particular iteration i > 0, we use the following notation:

• the path from s to t in Ti−1, i.e., the path along which we try to send the packet to t in
Line 4 in the iteration, is (s, v1, v2, . . . , vp, t), and

• the exception that prevented the packet from reaching t in the iteration is xi =
(vr−l, vr−l+1, . . . , vr, vr+1), which consists of l + 1 edges.

6.2.1 Modifying the graph

The modification of Gi−1 into Gi (Line 6) in the ith iteration eliminates exception xi while
preserving all the xi-avoiding paths in Gi−1. We do the modification in two steps.

In the first step, we create a graph G′
i−1 by replicating the intermediate vertices of xi

(i.e., the vertices vr−l+1, vr−l+2, . . . , vr). We also add appropriate edges to the replica v′ of a
vertex v. Specifically, when we add v′ to Gi−1, we also add the edges of appropriate weights
between v′ and the neighbors of v. It is easy to see that if a path in Gi−1 uses l′ ≤ l intermediate
vertices of xi, then there are exactly 2l′ copies of the path in G′

i−1. We say that a path in G′
i−1

is xi-avoiding if it contains none of the 2l copies of xi.

In the second step, we build a spanning subgraph Gi of G′
i−1 by deleting a few edges from

G′
i−1 in such a way that all copies of xi in G′

i−1 are eliminated, but all xi-avoiding paths in
G′

i−1 remain unchanged. To build Gi from G′
i−1, we delete the edges (vj−1, v

′
j) and (v′j , vj−1)

for all j ∈ [r− l+1, r]. We also delete the edge (vr, vr+1), all the outgoing edges from v′r except
(v′r, vr+1), and all the outgoing edges from v′j except (v′j , v

′
j+1) for all j ∈ [r − l + 1, r − 1].

Figure 6.2 shows how the “neighborhood” of an exception changes from Gi−1 to Gi. As before,
the undirected edges in the figure are bidirectional.

Observation 6.1. Graph Gi has no copy of xi.

111

vr−3

vr−2

vr−1

vr

vr+1

(a) Gi−1

vr−3

vr−2

vr−1

vr

vr+1

v′

r−2

v′

r−1

v′

r

(b) G
′

i−1

vr−3

vr−2

vr−1

vr

vr+1

v′

r−2

v′

r−1

v′

r

(c) Gi

Figure 6.2: Modifying Gi−1 to Gi: (a) The part of Gi−1 at an exception xi =
(vr−3, vr−2, vr−1, vr, vr+1), with l = 3. (b) Replicating vertices to create G′

i−1. The dashed
paths show two of the 8 copies of the exception. (c) Deleting edges to create Gi. The dot-
ted lines denote deleted edges. Note that the edge (vr, vr+1) has been deleted, but (vr+1, vr)
remains.

Observation 6.2. (i) Graph Gi has no negative weight cycle.

(ii) If the edge-weights in Gi−1 are non-negative, so are the edge-weights in Gi.

(iii) If Gi−1 is a directed acyclic graph, so is Gi. Moreover, by inserting the sequence
(v′r−l+1, v

′
r−l+2, . . . , v

′
r) right before vr in a topological order of the vertices in Gi−1, we

get a topological order of the vertices in Gi.

In Section 6.3.1 we will prove that Gi still contains all the xi-avoiding paths of Gi−1.

The vertices in Gi [G′
i−1] that exist also in Gi−1 (i.e., the ones that are not replica vertices)

are called the old vertices of Gi [respectively G′
i−1]. Note that the vertices of G0 exist in Gi for

all i ≥ 0. These vertices are called the original vertices of Gi.

6.2.2 Constructing the tree

In Line 7 of our algorithm we construct a tree Ti that contains a shortest xi-avoiding path from
s to every other vertex in Gi−1. Tree Ti is rooted at s, and its edges are directed away from
s. Not every shortest path tree rooted at s in Gi will work. In order to guarantee termination
of the algorithm, Ti must be similar to Ti−1, specifically, every xi-avoiding path from s in Ti−1

must be present in Ti. The necessity of this restriction is explained in Section 6.3.3.

We construct the required Ti by preserving as much of Ti−1 as possible, and then applying
the relaxation process (discussed in Section 6.1.2) starting from the preserved part of Ti−1. We
have to modify the initialization step of the standard relaxation process in the manner used in
Lemma 6.1. To be precise, let Wi be the set of vertices that are either replica vertices in Gi

112

or descendants of vr+1 in Ti−1, and let Ui be the set of all other vertices in Gi. The part of
Ti−1 that we preserve spans Ui. Our initialization step temporarily sets Ti = Ti−1 − Wi, and
then sets the estimated distance d(v) to infinity for all v ∈ Wi. For all v ∈ Ui, d(v) remains
unchanged from the previous iteration (i.e., d(v) denotes the s-v distance in the preserved part
of Ti−1). After initialization, we run the main iterative part of the standard relaxation process:
we repeatedly relax the edges until d(v) ≤ d(u) + w(u, v) is true for every edge (u, v). The
process terminates because Gi has no negative weight cycle (Observation 6.2(i)). It makes the
temporary Ti “grow” into a spanning tree in Gi. The order in which the edges are relaxed
depends on the class of Gi (i.e., whether Gi has a cycle and/or a negative edge-weight), and
we follow the order used in one of the classical single-source shortest path algorithms. We will
discuss this in detail in Section 6.4.

6.3 Correctness and analysis

6.3.1 Justifying the graph modification

In this section we prove the following lemma, which uses the notion of a corresponding path.
Consider any path Pi in Gi. By substituting every vertex in Pi that is not present in Gi−1

with the corresponding old vertex in Gi−1, we get the corresponding path Pi−1 in Gi−1. This
is possible because any “new” edge in Gi is a replica of an edge in Gi−1. We define the
corresponding path Pj in Gj for all j < i by repeating this argument.

Lemma. If Pi is a shortest path from s to an original vertex v in Gi, P0 is a shortest
{x1, x2, . . . , xi}-avoiding path from s to v in G0.

To prove the above lemma (repeated as Lemma 6.4 below), we will first prove that xi-
avoiding paths in Gi−1 are preserved in Gi (Lemma 6.3), using the following characteristic of
an xi-avoiding path in the intermediate graph G′

i−1:

Lemma 6.2. For any xi-avoiding path P from s to v that uses only the old vertices in G′
i−1,

there exists a copy of P in Gi that starts and ends at the old vertices s and v respectively, and
possibly passes through the corresponding replicas of its intermediate vertices.

Proof. We prove this lemma by re-routing any portion of P that uses the directed edge (vr, vr+1)
to use the replica edge (v′r, vr+1) instead.

Graph Gi contains all the edges between pairs of old vertices in G′
i−1 except for the directed

edge (vr, vr+1). Thus P can remain unchanged if it does not use this directed edge. Otherwise
we will re-route any portion of P that uses the directed edge (vr, vr+1) to use the replica edge
(v′r, vr+1) instead. Let P = (s = w1, w2, . . . , wq = v), and (wj , wj+1) be an occurrence of
(vr, vr+1) in P . Tracing P backwards from wj , let h ≤ j be the minimum index such that
(wh, wh+1, . . . , wj+1) is a subpath of xi. Because P is xi-avoiding, wh must be an intermediate
vertex of xi. This implies that h > 1, since s = w1 is not an intermediate vertex of xi because
of the following reasons: (i) xi is a path in the shortest path tree rooted at s in Gi−1, and (ii)
there is no replica of s in Gi. Therefore wh−1 exists. We will reroute the portion of P between
wh−1 and wj+1 by using the corresponding replica vertices in place of the subpath (wh, . . . , wj)

113

of xi. Note that the required edges exist in Gi (since P does not contain the whole exception
xi), and that the portions of P that we re-route are disjoint along P . Moreover, P starts and
ends at the old vertices s and v respectively.

Lemma 6.3. Any xi-avoiding path from s to v in Gi−1 has a copy in Gi that starts and ends
at the old vertices s and v respectively, and possibly goes through the corresponding replicas of
its intermediate vertices.

Proof. Let P be the xi-avoiding path in Gi−1. As we do not delete any edge to construct G′
i−1

from Gi−1, P remains unchanged in G′
i−1. Moreover, P uses no replica vertex in G′

i−1. So,
Lemma 6.2 implies that P exists in Gi with the same old vertices at the endpoints, possibly
going through the corresponding replicas of the intermediate vertices.

Lemma 6.3 along with Observation 6.1 implies that we can find a shortest xi-avoiding path
in Gi−1 using a shortest path in Gi. The main lemma of this section proves a stronger version
of this claim that covers all the modifications done from G0 to Gi:

Lemma 6.4. If Pi is a shortest path from s to an original vertex v in Gi, P0 is a shortest
{x1, x2, . . . , xi}-avoiding path from s to v in G0.

Proof. For any j ∈ [0, i], let Xj = {xj+1, xj+2, . . . , xi}. We show that for any j, if Pj is a
shortest Xj-avoiding path in Gj , then Pj−1 is a shortest Xj−1-avoiding path in Gj−1. The
lemma then follows by induction on j, with basis j = i, because Xi = ∅ and thus Pi is a
shortest Xi-avoiding path in Gi.

If Pj is a shortest Xj-avoiding path in Gj , Pj is Xj−1-avoiding because Pj is xj-avoiding by
Observation 6.1, and Xj∪{xj} = Xj−1. So, the corresponding path Pj−1 is also Xj−1-avoiding.
If we assume by contradiction that Pj−1 is not a shortest Xj−1-avoiding path in Gj−1, then
there exists another path P ′

j−1 from s to v in Gj−1 which is Xj−1-avoiding and is shorter than
Pj−1. Since xj ∈ Xj−1, P ′

j−1 is xj-avoiding, and hence by Lemma 6.3, there is a copy P ′
j of

path P ′
j−1 in Gj which has the same original vertices at the endpoints. As P ′

j−1 is Xj-avoiding,
P ′

j is also Xj-avoiding. This is impossible because P ′
j is shorter than Pj . Therefore, Pj−1 is a

shortest Xj−1-avoiding path in Gj−1.

6.3.2 Justifying the tree construction

To show that the “incremental” approach used in Section 6.2.2 to construct Ti is correct, we
first show that the part of Ti−1 that we keep unchanged in Ti is composed of shortest paths in
Gi:

Lemma 6.5. For every vertex v ∈ Ui, the path P from s to v in Ti−1 is a shortest path in Gi.

Proof. First we show that P exists in Gi. Every vertex in Ti−1 exists in Gi as an old vertex.
So, P exists in Gi through the old vertices if no edge of P gets deleted in Gi. The only edge
between a pair of old vertices in Gi−1 that gets deleted in Gi is (vr, vr+1). Since v is not a
descendant of vr+1 in Ti−1, P does not use the edge (vr, vr+1). Therefore, no edge of P gets
deleted in Gi. So, P exists in Gi through the old vertices.

114

Neither the modification from Gi−1 to G′
i−1 nor the one from G′

i−1 to Gi creates any
“shortcut” between any pair of vertices. So, there is no way that the distance between a pair
of old vertices decreases after these modifications. Since these modifications do not change P ,
which is a shortest path in Gi−1, P is a shortest path in Gi.

Lemma 6.6. The tree Ti is a shortest path tree in Gi.

Proof. For every vertex v ∈ Ui, the path P from s to v in Ti is the same as the one in Ti−1 and
hence, a shortest path in Gi (Lemma 6.5). The lemma then follows from Lemma 6.1.

Lemmas 6.4 and 6.6 together prove that our algorithm is correct provided it terminates,
which we establish in the next section.

6.3.3 Analysis of timing

Although in every iteration we eliminate one exception by modifying the graph, we introduce
copies of certain other exceptions through vertex replication. Still our algorithm does not
iterate indefinitely because, as we will show in this section, the incremental construction of the
shortest path tree (Section 6.2.2) guarantees that we do not discover more than one copy of any
exception. We first show that any exception in Gi−1 has at most two copies in Gi (Lemma 6.7),
and then prove that one of these two copies is never discovered in the future (Lemma 6.8):

Lemma 6.7. Let y 6= xi be any exception in Gi−1. If the last vertex of y is not an intermediate
vertex of xi, then Gi contains exactly one copy of y. Otherwise, Gi contains exactly two copies
of y. In the latter case, one copy of y in Gi ends at the old vertex v and the other copy ends
at the corresponding replica v′.

Proof. Let π = (w1, w2, . . . , wj) be a maximal sequence of vertices in y that is a subsequence
of (vr−l+1, vr−l+2, . . . , vr). Let w′

j be the replica of wj in Gi. We will first show that if there
is a vertex v in y right after π, then exactly one of the edges (wj , v) and (w′

j , v) exists in Gi.
Consider the subgraph of Gi induced on the set of replica vertices {v′r−l+1, v

′
r−l+2, . . . , v

′
r}: this

subgraph is a directed path from v′r−l+1 to v′r, and the only edge that goes out of this subgraph
is (v′r, vr+1). Therefore, (i) when (wj , v) = (vr, vr+1), (w′

j , v) ∈ Gi and (wj , v) 6∈ Gi, and (ii)
otherwise, (wj , v) ∈ Gi and (w′

j , v) 6∈ Gi.

Now Gi has exactly two copies of π: one through the old vertices, and another through the
replicas. The above claim implies that when there is a vertex v in y right after π, Gi has at
most one copy of the part of y from w1 to v. However, when π is a suffix of y, Gi has both
the copies of the part of y from w1 to wj . The lemma then follows because any part of y that
contains no intermediate vertex of xi has exactly one copy in Gi.

Lemma 6.8. Let y 6= xi be any exception in Gi−1 such that the last vertex of y is an interme-
diate vertex v of xi. The copy of y that ends at the old vertex v in Gi is not discovered by the
algorithm in any future iteration.

115

Proof. The copy of the path (s, v1, v2, . . . , vr) through the old vertices in Gi contains v. Let P
be the part of this path from s to v. Clearly, P ∈ Ti−1, and P does not contain any exception
because the oracle returns the exception with the earlier last vertex. So, the way we construct
Tj from Tj−1 for any iteration j ≥ i ensures that P ∈ Tj .

Let y1 be the copy of y that ends at v. Now y1 is not a subpath of P because P does not
contain any exception. For any j ≥ i, P ∈ Tj , and both P and y1 end at the same vertex,
therefore y1 6∈ Tj . So, a packet in iteration j will not follow y1, and y1 will not be discovered
in that iteration.

Lemma 6.9. The while loop iterates at most k = |X| times.

Proof. For any iteration i, Gi−1 contains xi, and Gi does not contain xi. Every exception other
than xi in Gi−1 has either one or two copies in Gi (Lemma 6.7). By Lemma 6.8, if an exception
has two copies in Gi, only one of them is relevant in the future. Thus the number of exceptions
effectively decreases by one in each iteration. The lemma then follows.

6.3.4 Relaxing the edges efficiently

It follows from Lemma 6.9 that our algorithm terminates in polynomial time provided that in
every iteration i ∈ [1, k], we relax the edges of Gi a polynomial number of times. Although the
exact number depends on the graph class of Gi (i.e., whether Gi has a cycle and/or a negative
edge-weight), this section makes the relaxation process efficient for all graphs we consider.

It is obvious that each iteration of our algorithm increases both the number of vertices and
the number of edges, which implies that the time required for iteration i will increase with i.
However, the shortest paths that are already known in the ith iteration can be utilized in the
following way to suppress the increase in time-per-iteration.

We relax the edges in Gi in such an order that the number of times we relax the edges
depends only on n and m even though the size of Gi is a function of n, m, d and the total
size of the exceptions discovered so far. (Gi can have as many as n + L vertices and as many
as m + dL edges, as we will show in the proof of Lemma 6.10.) We achieve this by relaxing
the edges of Gi in the following two phases. The first phase, which is independent of the
graph class of Gi, relaxes all the edges (u, v) such that u ∈ Ui and v ∈ Wi. The second phase
relaxes the edges connecting two vertices in Wi, by running a classical single-source shortest
path algorithm on the subgraph of Gi induced on Wi. Observe that a shortest path from s
to any vertex v ∈ Wi consists of a sequence of zero or more edges connecting two vertices in
Ui, followed by an edge connecting a vertex in Ui to a vertex in Wi, and finally followed by a
sequence of zero or more edges connecting two vertices in Wi. The edges in the first sequence
do not need to be relaxed because d(u) is the already actual shortest distance for all u ∈ Ui

(Lemma 6.5). So we can relax the edges in the above two phases without compromising the
correctness of our algorithm.

The above technique ensures that the time requirement for each iteration i of the while
loop, and in particular the second phase of relaxation in iteration i, is independent of i even
though the graph gets bigger with i. Let T (n, m) and S(n, m) be respectively the time and the
extra space used in the second phase of relaxation in every iteration. (We will soon compute
T (n, m) and S(n, m) for specific classes of input graphs.)

116

Lemma 6.10. We can compute a shortest X-avoiding path from s to t in O(k(n+m+T (n, m)))
time and O(n + m + dL + S(n, m)) space.

Proof. The correctness of the algorithm follows from Lemmas 6.4 and 6.6.

Let li be the number of intermediate vertices of xi—the exception discovered at the ith
iteration (thus the size of the exception is li + 2). We first analyze space. The ith iteration
constructs Gi by adding li vertices and at most dli edges to Gi−1. Since the algorithm iterates
at most k times (Lemma 6.9), there are n+

∑k
i=1 li < n+L vertices and at most m+

∑k
i=1 dli <

m + dL edges in Gi. So, any intermediate graph and the associated estimated distances takes
O(n + m + dL) space. The space requirement then follows.

vr−3

vr−2

vr−1

vr

vr+1

v′

r−2

v′

r−1

v′

r

Figure 6.3: The graph in Figure 6.2(c) without the incoming edges of the intermediate vertices
of xi.

Before we analyze the time requirement, we first claim that in the ith iteration, each phase
of relaxation considers at most m edges of Gi, although Gi can have as many as m+ dL edges.
Observe that none of the phases relaxes the incoming edges of the vertices in Ui, and that all
the intermediate vertices of xi are in Ui. If we (temporarily) omit the incoming edges of the
intermediate vertices of xi as shown in Figure 6.3, the number of new edges in Gi becomes less
than the number of those edges that are either deleted from Gi−1 or omitted in this figure.
The claim then follows.

Now, in the ith iteration the construction of Gi takes O(li + m) = O(n + m) time, and
initializing the relaxation process takes O(n) time (since |Wi| ≤ n). The above claim together
with the inequality |Wi| ≤ n implies that the first phase of relaxation takes O(n+m) time. So
every iteration takes O(n + m + T (n, m)) time. The total time requirement then follows from
Lemma 6.9.

6.4 Algorithms for specific graph classes

The only part of our algorithm that requires further discussion is the second phase of relaxation
in each iteration of the main loop. As we have mentioned before, we use a classical single-source

117

shortest path algorithm, although in a slightly modified form. Our choice of single-source
shortest path algorithm depends on the graph class of G (i.e., whether G has a cycle and/or a
negative edge-weight), as follows. Note that our graph modification preserves the graph class
(Observation 6.2).

(i) When G is a directed acyclic graph, we relax the outgoing edges of each vertex while
iterating through the vertices in a topological order [34, Section 24.2].

(ii) When the edge-weights in G are non-negative, we use Dijkstra’s algorithm with a Fi-
bonacci heap [34, Section 24.3].

(iii) When negative edge-weights are present, we use the Bellman-Ford algorithm [34, Sec-
tion 24.1].

Each of these classical algorithms starts with the standard initialization step of the relax-
ation process. Recall that the only task performed in this step is to set the estimated distance
of vertex v to zero if v is the source, and to infinity otherwise. The only modification we
make to the classical algorithm is that we omit this initialization step. In each iteration, our
modified initialization step of relaxation (discussed in Section 6.2.2) followed by the first phase
of relaxation (discussed in Section 6.3.4) initializes the estimated distances in a way appropri-
ate for our purpose. Then the second phase of relaxation is performed by using one of these
algorithms without the standard initialization step.

This modification raises a correctness issue. The correctness of our generic algorithm in
Section 6.2 relies on the condition that at the end of the second phase relaxation in each
iteration i, we have d(v) ≤ d(u) + w(u, v) for every edge (u, v) that is reachable from s in
Gi. None of the three classical shortest path algorithms explicitly checks before termination
whether the condition is true, but the condition holds at termination in each case. It is not
clear whether this is the case even after our modified initialization step. We will prove that
the condition is still satisfied in our algorithms.

Theorem 6.1. When G is a directed acyclic graph, we can compute a shortest X-avoiding
path from s to t in O(k(n + m)) time and O(n + m + dL) space, where d is the largest degree
of a vertex in G, k is the number of exceptions in X, and L is the total size of all exceptions
in X.

Proof. We first prove that at the end of the second phase relaxation in each iteration i, we
have d(v) ≤ d(u) + w(u, v) for any edge (u, v) that is reachable from s in Gi. Since in the
second phase we relax the outgoing edges of each vertex while iterating through the vertices
in a topological order, we relax the edge (u, v) after relaxing all the incoming edges of u. This
implies that d(u) cannot change after we relax (u, v). Because d(v) ≤ d(u) + w(u, v) at this
point of time, and relaxation never increases d(v), the inequality remains true till the end of
the second phase.

The theorem then follows from Lemma 6.10, as we have T (n, m) = O(n+m) and S(n, m) =
O(1) in this case [34, Section 24.2].

Theorem 6.2. When G is a graph with non-negative edge-weights, we can compute a shortest
X-avoiding path from s to t in O(kn log n + km) time and O(n + m + dL) space, where d is

118

the largest degree of a vertex in G, k is the number of exceptions in X, and L is the total size
of all exceptions in X.

Proof. As in the case of the proof of Theorem 6.1, we first show that at the end of the second
phase relaxation in each iteration i, we have d(v) ≤ d(u) + w(u, v) for any edge (u, v) that
is reachable from s in Gi. We use Dijkstra’s algorithm, where we relax the edge (u, v) after
removing (dequeuing) u from the priority queue. Because any vertex u′ dequeued after u has
d(u′) ≥ d(u), estimated distance d(u) remains unchanged after we dequeue u. Relaxing (u, v)
makes d(v) ≤ d(u) + w(u, v), and the inequality remains true till the end of the second phase
since relaxation never increases d(v).

The theorem then follows from Lemma 6.10, as we have T (n, m) = O(n log n + m) and
S(n, m) = O(n) in this case [34, Section 24.3].

Theorem 6.3. When G contains negative edge-weights but no negative weight cycle, we can
compute a shortest X-avoiding path from s to t in O(knm) time and O(n + m + dL) space,
where d is the largest degree of a vertex in G, k is the number of exceptions in X, and L is the
total size of all exceptions in X.

Proof. We first prove that at the end of the second phase relaxation in each iteration i, d(v)
is the shortest distance from s to v for each vertex v in Gi. This is true for all vertices in
Ui by Lemma 6.5. For every v ∈ Wi that is reachable from s in Gi, there is a shortest path
(u0 = s, u1, u2, . . . , ua, w1, w2, . . . , wb = v) such that uj ∈ Ui for all j ∈ [0, a] and wj ∈ Wi for
all j ∈ [1, b]. The first phase of relaxation sets d(w1) to the shortest s-w1 distance. In the
second phase, every iteration of the outer loop in the Bellman-Ford algorithm relaxes every
edge between the vertices in Wi. Clearly, the first b − 1 iterations of this loop relax the edges
of the path (w1, w2, . . . , wb) in the order from (w1, w2) to (wb−1, wb). Therefore, d(wb = v) is
set to the shortest s-v distance at the end of the (b − 1)th iteration of this loop.

It then follows from the triangle inequality that d(v) ≤ d(u)+w(u, v) for any edge (u, v) of
Gi. The theorem then follows from Lemma 6.10, as we have T (n, m) = O(nm) and S(n, m) =
O(1) in this case [34, Section 24.1].

Interestingly, when X is known explicitly, we can solve the shortest exception avoiding path
problem by modifying our generic algorithm in a straightforward manner as follows. We can
make a deterministic finite automaton (DFA) from the set of forbidden paths so that we can
determine in linear time whether a path contains an exception or not. Using this approach, we
solve this case in O(dL + k(n + m + L + T (n, m))) preprocessing time. Recall that Villeneuve
and Desaulniers [99] solved this case in O(dL + T (n + L, m + dL)) preprocessing time, which
is faster in general. There are, however, a few very restricted settings in which our approach is
better. One such case is: k = O(1), L = Θ(n) and m = o(dn) (intuitively, when there are a few
long exceptions, and the average degree of a vertex is much smaller than the largest degree).

6.5 Computing shortest paths to all vertices

The generic algorithm in Section 6.2 can be extended to compute a shortest path from s to
every other vertex in G. Of course we can run the generic algorithm once with every vertex

119

in G as a destination, but we are then likely to encounter some of the exceptions multiple
times. We avoid this repetitive discovery of exceptions by saving some information in between
the iterations as follows: for every destination vertex (except of course the first one), we start
with the graph and the shortest path tree constructed for the previous destination vertex. The
algorithm is as follows:

construct the shortest path tree T0 rooted at s in G0 = G;1

let i = 1;2

for each vertex v ∈ V do3

send a packet from s to v through the path in Ti−1;4

while the packet fails to reach v do5

let xi be the exception that caused the failure;6

construct Gi from Gi−1 by replicating the intermediate vertices of xi and then7

deleting selected edges;
construct the shortest path tree Ti rooted at s in Gi using Ti−1;8

send a packet from s to v through the path in Ti;9

let i = i + 1;10

end11

end12

Lemma 6.11. We can preprocess the graph in O(k(n + m + T (n, m))) time and O(n + m +
dL + S(n, m)) space so that we can find a shortest X-avoiding path from s to any vertex in
O(n + L) time.

Proof. Since every exception in X is handled at most once, the while loop still iterates at most
k times, and therefore, the time and space requirement follows from the proof of Lemma 6.10.

We then have the following theorems for the three classes of graphs:

Theorem 6.4. When G is a directed acyclic graph, we can preprocess the graph in O(k(n+m))
time and O(n + m + dL) space so that we can find a shortest X-avoiding path from s to any
vertex in O(n + L) time.

Theorem 6.5. When G is a graph with non-negative edge-weights, we can preprocess the graph
in O(kn log n + km) time and O(n + m + dL) space so that we can find a shortest X-avoiding
path from s to any vertex in O(n + L) time.

Theorem 6.6. When G contains negative edge-weights but no negative weight cycle, we can
preprocess the graph in O(knm) time and O(n + m + dL) space so that we can find a shortest
X-avoiding path from s to any vertex in O(n + L) time.

6.6 Handling a weaker oracle

The oracle we considered so far returns an exception that ends earliest in the query path.
We now consider a weaker oracle that instead returns any exception on the query path. The

120

easiest way to handle this weaker oracle is to modify the algorithm in Section 6.2 as follows:
whenever the path P from s to t in the current shortest path tree fails (Line 4), we repeatedly
query the weaker oracle with appropriate subpaths of P to locate an exception that ends
earliest (intuitively, we “compensate” for the weakness of the oracle by querying the oracle
more often). More precisely, we perform a binary search on the length of a prefix of P to find
the smallest prefix that contains an exception. Any exception in the smallest prefix is then
used as exception xi in Line 5 of our algorithm.

Lemma 6.12. We can preprocess the graph in O(k(n+m+log L+T (n, m))) time and O(n+
m + dL + S(n, m)) space so that we can find a shortest X-avoiding path from s to any vertex
in O(n + L) time.

Proof. The only difference between the algorithm in Section 6.5 and the current algorithm is
that in each iteration, locating exception xi in the path P from s to t in Ti−1 takes O(1) time
in the previous algorithm, and O(log(n + L)) time in the current algorithm (since P can have
at most n + L vertices). So, we use O(k log(n + L)) more time in preprocessing in the current
algorithm. The lemma then follows Lemma 6.11.

We thus have the following running time for graphs with negative edge-weights:

Theorem 6.7. When G contains negative edge-weights but no negative weight cycle, we can
preprocess the graph in O(k(nm + log L)) time and O(n + m + dL) space so that we can find a
shortest X-avoiding path from s to any vertex in O(n + L) time.

For each of the other two classes of graphs, i.e., directed acyclic graphs and graphs with
non-negative edge-weights, we can do better than the generic algorithm. We instead have a
“specialized” algorithm that is faster than the one derived from the above generic algorithm.
In each case, the intuition is that we “merge” the while loop of our generic algorithm with the
outer loop of the classical single-source shortest path algorithm. This is possible because the
classical algorithm starts with an empty shortest path tree and then adds one vertex to the
current shortest path tree in each iteration of the outer loop. We effectively stop the growth of
a tree containing forbidden paths by trying the path (i.e., querying the oracle with the path)
from s to the vertex being added to the tree in the beginning of each iteration. We will discuss
each algorithm below.

For directed acyclic graphs, we modify the classical algorithm slightly as follows. Inside
the outer loop (i.e., the loop that considers the vertices in a topological order), we first try the
path from s to the current vertex v in the current shortest path tree. If the path is exception
avoiding, we relax the outgoing edges of v as in the classical algorithm. Otherwise, we first
modify the graph using the exception returned by the oracle, as described in Section 6.2.1.
We then relax all the incoming edges of v and the replica vertices, and update the topological
order used in the outer loop to include the replica vertices. Finally we continue the outer loop
from the first replica vertex in the topological order.

Theorem 6.8. When G is a directed acyclic graph, we can preprocess the graph in O(n+m+
dL)) time and O(n + m + dL) space so that we can find a shortest X-avoiding path from s to
any vertex in O(n + L) time.

121

Proof. Let (x1, x2, . . .) be the sequence of exceptions discovered by the algorithm. To be
consistent with the notation in Section 6.2, let G0 = G, and Gi be the modified graph after
the discovery of the ith exception. The algorithm above maintains a partial shortest path tree
rooted at s, but does not define Ti. We define Ti be a shortest path tree in Gi that contains
the current partial shortest path tree maintained by the algorithm.

The same argument as in the proof of Lemma 6.9 implies that the algorithms discovers at
most k exceptions. By Observation 6.2(iii), the outer loop iterates in a topological order of the
vertices in the current graph. The correctness of the algorithm then follows from that of the
classical algorithm.

Let li be the number of intermediate vertices of exception xi. For each i, there are n +
∑k

i=1 li < n+L vertices and at most m+
∑k

i=1 dli < m+dL edges in Gi. So, any intermediate
graph and the associated estimated distances takes O(n + m + dL) space. The outer loop
iterates at most n +

∑k
i=1(li + 1) < n + 2L times, and the number of times we relax the

edges is at most the number of edges, which is less than m + dL. The preprocessing time then
follows.

For graphs with non-negative edge-weights, we modify Dijkstra’s algorithm in a similar
manner: inside the outer loop (i.e., the loop that removes vertices from the priority queue one
by one), we first try the path from s to the current vertex v in the current shortest path tree,
and then relax the outgoing edges of v as in the classical algorithm if the path is exception
avoiding. Otherwise, we first modify the graph using the exception returned by the oracle as
before. We then relax all the incoming edges of v and the replica vertices, and insert v and the
replica vertices into the priority queue. Finally we continue the outer loop.

Theorem 6.9. When G is a graph with non-negative edge-weights, we can preprocess the graph
in O((n+L) log(n+L)+m+dL) time and O(n+m+dL) space so that we can find a shortest
X-avoiding path from s to any vertex in O(n + L) time.

Proof. The proof is similar to that of Theorem 6.8 except that the correctness follows from
Dijkstra’s algorithm, and each iteration of the outer loop takes O(log(n + L)) extra time for
queue operations.

Each of the specialized algorithms in Theorems 6.8 and 6.9 is faster than the corresponding
generic algorithm (Lemma 6.12). However, the specialized algorithm makes as many as n + L
queries to the oracle versus at most k oracle queries for the generic one. The generic algorithm
is faster only in the special case k = O(1).

It is straightforward to extend the above algorithms to handle an even weaker oracle that
does not reveal the location of an exception, but instead returns a boolean value indicating
whether the query path is exception avoiding or not.

6.7 Conclusion

In this chapter we have presented an algorithm to compute shortest exception avoiding paths in
the model where exceptions are not known a priori. Our algorithm is generic and depends on a

122

(conventional) shortest path algorithm, such as Dijkstra’s algorithm in the case of non-negative
edge-weights. The algorithm handles forbidden paths by coupling the vertex replication tech-
nique with the “growth” of a shortest path tree in the graph. We have adapted the generic
algorithm to three classes of graphs, and two types of oracles that reveal different amount of
information when queried about the feasibility of a path.

Our work in this chapter presents four avenues for future research.

We modeled forbidden paths by means of an oracle that—when queried—informs the algo-
rithm of relevant forbidden paths. This is appropriate for the optical network routing problem,
but the traffic routing application discussed in Section 6.1.1 seems to call for a somewhat dif-
ferent model. One can imagine the dispatcher, in a more passive role, receiving updates about
road closures and re-openings. In this situation, the set of forbidden paths is a dynamic set,
and the algorithm is given updates when a path is added to, or deleted from, the forbidden
path set. This is an interesting problem for which our techniques offer nothing beyond the
naive approach of re-starting the algorithm from scratch at most updates.

When the forbidden paths in a road network are static but unknown, our approach applies
only to the restricted case that vehicles are dispatched repeatedly from a service provider.
The more natural problem of finding a shortest path for a vehicle in such a road network
seems significantly harder than finding such a path for a network packet. This is because upon
discovering a forbidden path, a vehicle needs to find a detour from the point of failure (rather
than from the source as in the case of a network packet). It is easy for an adversary to “fool”
the vehicle into entering a part of the network from which the destination is unreachable, and
it is not clear to us how to handle this issue.

Another interesting avenue is to explore other “traditional” optimization problems in the
presence of forbidden paths. Two examples are the all-pairs shortest path problem and the
bottleneck shortest path problem. One could also extend the notion of a spanning tree by asking
for the minimum cost subset of edges that includes a path (avoiding forbidden paths) between
any two vertices. Or one might ask for minimum weight strongly connected or biconnected
subgraphs.

We mention one final extension. Rather than forbidding some paths, a more general ap-
proach is to penalize some paths. More precisely, given a set of penalized paths, each having
a positive weight (a penalty) in addition to the total weight of its edges, define the weight of
a path P to be the sum of the weights of the edges in P plus the sum of the penalties of the
penalized subpaths in P . For example, in a road network where an edge-weight denotes the
travel time along the edge, the extra time (delay) needed for certain left turns during rush hours
can be modeled as penalties of corresponding two-edge paths. A penalized path generalizes the
“non-transitive behavior” modeled by forbidden paths because a penalized path with a very
high penalty is equivalent to a forbidden path. Our construction can be generalized to handle
non-overlapping penalized paths, but we do not see how to avoid an exponential blow-up in
the general case.

123

Chapter 7

Conclusion

In this thesis we studied the problem of finding shortest paths subject to various feasibility
constraints arising in practice. We focused on shortest paths in two different settings: in
terrains and in graphs.

In Chapters 3 to 5, we explored terrain shortest paths subject to certain height-related
constraints:

• In Chapter 3 we studied the shortest descending path (SDP) problem. We gave a full
characterization of the bend angles of an SDP, and then reduced the SDP problem to
the apparently simpler problem of finding an SDP through a given sequence of faces.
We devised two approximation algorithms to find SDPs through given faces, and two
polynomial time (exact) algorithms to find SDPs in two special classes of terrains.

• In Chapter 4 we presented two (1 + ǫ)-approximation algorithms for SDPs in general
terrains. Both algorithms are based on the Steiner point approach, and are simple,
robust and easy to implement. The running times are not comparable in general, but we
can choose the one that is faster for a given terrain.

• In Chapter 5 we generalized the SDP problem to the shortest gently descending path
(SGDP) problem. We explored some properties of SGDPs, and devised using the Steiner
point approach two easy-to-implement (1+ ǫ)-approximation algorithms for the problem.
We showed that finding an SGDP with a limited number of bends or a limited total
turn-angle is NP-hard.

In Chapter 6 we focused on the graph shortest path problem of finding shortest paths
avoiding forbidden subpaths. We presented an algorithm to compute such paths in the model
where forbidden subpaths are not known a priori. We adapted the algorithm to three classes
of graphs, and explored two types of oracles that reveal different amount of information when
queried about forbidden subpaths.

In terrains, the most challenging open question seems to be the complexity of any of the
following problems: the SDP problem, the SGDP problem, the weighted region problem, or
the shortest anisotropic path problem which generalizes the other three problems. Our results
imply that the SDP problem (and hence the SGDP problem) remains open even when we know

124

the sequence of faces used by the shortest path. For the weighted region problem, numerical
issues in finding a shortest path through given faces remain unsolved 18 years after the issues
were first encountered. Hence a more “promising” open problem seems to be to prove the
hardness of any of the four problems, perhaps for the case of a given face sequence. One step
in this direction may be showing the hardness of a related bicriteria shortest path problem
(e.g., SDPs with at most k bends). We gave the hardness of two bicriteria problems for SGDPs
(and for shortest anisotropic paths). For other related bicriteria problems the hardness may be
non-trivial. Even in a simpler 2D setting, the complexity of the bicriteria problem of finding a
shortest k-link path in a polygon with holes has been open for many years.

Another interesting direction for further research is characterizing the bend angles and other
structural properties of SGDPs and shortest anisotropic paths in order to identify terrains in
which the problems are solvable in polynomial time, or to identify easy-to-handle cost models
for the shortest anisotropic path problem. Note that only approximation algorithms are known
for the shortest anisotropic path problem, and they are based on a restricted cost model.

Exploring structural properties of SGDPs and shortest anisotropic paths may also help in
devising faster approximation schemes. The fastest approximation scheme for the weighted
region problem is the one by Aleksandrov et al. [15], which places Steiner points on bisectors
of face angles, and relies on properties of locally shortest paths for error analysis. This seems
to be the only algorithm among all the Steiner point based algorithms for the weighted region
problem, the SDP problem, the SGDP problem, and the shortest anisotropic path problem
to utilize properties of locally shortest paths. Our preliminary effort to adapt the idea of
Aleksandrov et al. for the SDP problem did not work out, but it is conceivable that utilizing
properties of locally shortest paths in some way should yield a Steiner point graph smaller than
one built without using any structural properties of the desired path. This demands further
investigation, particularly for the shortest anisotropic path problem where even approximation
schemes are not known for the general cost model.

In graphs, one interesting problem is find a shortest path when the set of forbidden paths
is a dynamic set, which means that forbidden paths can be added to, or deleted from, the set.
For this problem our techniques offer nothing beyond the naive approach of re-starting the
algorithm from scratch at most changes to the set.

For the case of static but unknown forbidden paths, an interesting research direction is
adapting our technique for the problem of finding a shortest path for a vehicle in a road
network, where the discovery of a forbidden path should cause a detour from the point of
failure. The problem is non-trivial because it is easy for an adversary to “fool” the vehicle into
entering a part of the network from which the destination is unreachable.

We can also generalize the idea of forbidden paths to penalized paths each having a positive
weight (a penalty) representing, for example, the extra time (delay) needed for certain left
turns during rush hours in a road network. Our construction can be generalized to handle
non-overlapping penalized paths, but it is not clear how to avoid an exponential blow-up when
we have overlapping penalized paths.

125

References

[1] Peyman Afshani, Jeremy Barbay, and Timothy M. Chan. Instance-optimal geometric
algorithms. In Proceedings of the 50th Annual Symposium on Foundations of Computer
Science, page (to appear), 2009. 1

[2] Pankaj K. Agarwal, Sariel Har-Peled, and Meetesh Karia. Computing approximate short-
est paths on convex polytopes. Algorithmica, 33(2):227–242, 2002. 2, 2.1, 4.1

[3] Pankaj K. Agarwal, Sariel Har-Peled, Micha Sharir, and Kasturi R. Varadarajan. Approx-
imating shortest paths on a convex polytope in three dimensions. J. ACM, 44(4):567–584,
1997. 2

[4] Mustaq Ahmed, Sandip Das, Sachin Lodha, Anna Lubiw, Anil Mahesh-
wari, and Sasanka Roy. Approximation algorithms for shortest descending
paths in terrains. J. Discrete Alg., May 2009. Accepted for publication.
http://dx.doi.org/10.1016/j.jda.2009.05.001. 3.1, 1, 1

[5] Mustaq Ahmed and Anna Lubiw. Shortest descending paths through given faces. In Pro-
ceedings of the 18th Canadian Conference on Computational Geometry (CCCG), pages
35–38, August 2006. 1

[6] Mustaq Ahmed and Anna Lubiw. An approximation algorithm for shortest descending
paths. CoRR, 0705.1364v1 [cs.CG], May 2007. 1, 4.2.1

[7] Mustaq Ahmed and Anna Lubiw. Properties of shortest descending paths. The 17th Fall
Workshop on Computational and Combinatorial Geometry (FWCG), IBM T.J. Watson
Research Center, Hawthorne, New York, November 2007. 1

[8] Mustaq Ahmed and Anna Lubiw. Shortest anisotropic paths with few bends is NP-
complete. In The 18th Fall Workshop on Computational Geometry (FWCG): Abstracts,
pages 28–29, Rensselaer Polytechnic Institute, Troy, New York, October 2008. 2

[9] Mustaq Ahmed and Anna Lubiw. Shortest descending paths through given faces. Com-
put. Geom. Theory Appl., 42(5):464–470, July 2009. Special issue on selected pa-
pers from Canadian Conference on Computational Geometry (CCCG) 2005 and 2006.
http://dx.doi.org/10.1016/j.comgeo.2007.10.011. 3.1, 1

[10] Mustaq Ahmed and Anna Lubiw. Shortest paths avoiding forbidden subpaths. In Pro-
ceedings of the 26th International Symposium on Theoretical Aspects of Computer Science
(STACS), pages 63–74, February 2009. 1

126

http://dx.doi.org/10.1016/j.jda.2009.05.001
http://dx.doi.org/10.1016/j.comgeo.2007.10.011

[11] Mustaq Ahmed, Anna Lubiw, and Anil Maheshwari. Shortest gently descending paths.
In Proceedings of the Third Annual Workshop on Algorithms and Computation (WAL-
COM), volume 5431 of Lecture Notes in Computer Science, pages 59–70. Springer-Verlag,
February 2009. 1

[12] Alfred V. Aho and Margaret J. Corasick. Efficient string matching: an aid to bibliographic
search. Commun. ACM, 18(6):333–340, 1975. 6.1.4

[13] Lyudmil Aleksandrov, Mark Lanthier, Anil Maheshwari, and Jörg-Rüdiger Sack. An ǫ-
approximation algorithm for weighted shortest paths on polyhedral surfaces. In Proceed-
ings of the Sixth Scandinavian Workshop on Algorithm Theory, volume 1432 of Lecture
Notes in Computer Science, pages 11–22, Berlin, Germany, 1998. Springer-Verlag. 2,
2.3.1, 2.3.1, 2.3.1, 4.2.1, 4.4.1

[14] Lyudmil Aleksandrov, Anil Maheshwari, and Jörg-Rüdiger Sack. Approximation algo-
rithms for geometric shortest path problems. In Proceedings of the 32nd Annual ACM
Symposium on Theory of Computing, pages 286–295, New York, NY, USA, 2000. ACM
Press. 2, 2.3.1, 2.3.1, 2.3.1, 2.3.1, 4.2.1

[15] Lyudmil Aleksandrov, Anil Maheshwari, and Jörg-Rüdiger Sack. Determining approx-
imate shortest paths on weighted polyhedral surfaces. J. ACM, 52(1):25–53, 2005. 2,
2.3.1, 2.3.1, 2.3.1, 4.1, 4.2.1, 4.5, 7

[16] Esther M. Arkin, Joseph S. B. Mitchell, and Christine Piatko. Bicriteria shortest path
problems in the plane. In Proceedings of the Third Canadian Conference on Compu-
tational Geometry, pages 153–156, August 1991. See also the PhD thesis of Christine
Piatko. 5.1

[17] Peter Ashwood-Smith. Personal communication, 2007. 6.1.1

[18] Peter Ashwood-Smith, Don Fedyk, and Vik Saxena. Link viability con-
straints requirements for GMPLS-enabled networks. http://tools.ietf.org/html

/draft-ashwood-ccamp-gmpls-constraint-reqts-00, July 2005. Internet draft, work
in progress. 6.1.1

[19] Mikhail J. Atallah and Susan Fox, editors. Algorithms and Theory of Computation
Handbook. CRC Press, Inc., Boca Raton, FL, USA, 1998. 1, 3.3.3

[20] Chanderjit Bajaj. The algebraic complexity of shortest paths in polyhedral spaces. In
Proceedings of the 23rd Allerton Conference on Communication, Control and Computing,
pages 510–517, 1985. 2.1, 3.6

[21] Chanderjit Bajaj. The algebraic degree of geometric optimization problems. Discrete
Comput. Geom., 3(2):177–191, 1988. 2.1, 3.6, 4.1

[22] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University
Press, Cambridge, UK, 2004. 3.2, 3.3.2, 3.3.3

[23] Sergio Cabello. Many distances in planar graphs. In Proceedings of the 17th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1213–1220, New York, NY, USA,
2006. ACM Press. 6.1.4

127

http://tools.ietf.org/html
/draft-ashwood-ccamp-gmpls-constraint-reqts-00

[24] John F. Canny and John H. Reif. New lower bound techniques for robot motion planning
problems. In Proceedings of the 28th Annual Symposium on Foundations of Computer
Science, pages 49–60, 1987. 2.2.3, 3.1, 5.6

[25] Edward P. F. Chan and Yaya Yang. Shortest path tree computation in dynamic graphs.
IEEE Trans. Computers, 58(4):541–557, 2009. 6.1.4

[26] Bernard Chazelle. Triangulating a simple polygon in linear time. Discrete Comput.
Geom., 6(5):485–524, 1991. 2.1

[27] Bernard Chazelle, Ding Liu, and Avner Magen. Sublinear geometric algorithms. In
Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pages 531–
540, New York, NY, USA, 2003. ACM. 2

[28] Jindong Chen and Yijie Han. Shortest paths on a polyhedron. I. Computing shortest
paths. Internat. J. Comput. Geom. Appl., 6(2):127–144, 1996. 2, 2.2.2, 3.1, 3.4, 3.4.1,
3.5.2

[29] Siu-Wing Cheng, Hyeon-Suk Na, Antoine Vigneron, and Yajun Wang. Approximate
shortest paths in anisotropic regions. In Proceedings of the 18th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 766–774, Philadelphia, PA, USA, 2007. Society
for Industrial and Applied Mathematics. 4.5

[30] Siu-Wing Cheng, Hyeon-Suk Na, Antoine Vigneron, and Yajun Wang. Querying approxi-
mate shortest paths in anisotropic regions. In Proceedings of the 23rd Annual Symposium
on Computational Geometry, pages 84–91, New York, NY, USA, 2007. ACM. 2.3.2

[31] Siu-Wing Cheng, Hyeon-Suk Na, Antoine Vigneron, and Yajun Wang. Approximate
shortest paths in anisotropic regions. SIAM J. Comput., 38(3):802–824, 2008. 2, 2.3.2,
4.2.1, 5.1

[32] Joonsoo Choi, Jürgen Sellen, and Chee-Keng Yap. Approximate Euclidean shortest path
in 3-space. In Proceedings of the 10th Annual Symposium on Computational Geometry,
pages 41–48, New York, NY, USA, 1994. ACM. 2.2.3

[33] Kenneth L. Clarkson. Approximation algorithms for shortest path motion planning. In
Proceedings of the 19th Annual ACM Conference on Theory of Computing, pages 56–65,
New York, NY, USA, 1987. ACM Press. 2.3.1

[34] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson. Intro-
duction to Algorithms. McGraw-Hill Higher Education, 2001. 1, 6.1.3, 6.1.3, 6.1.4, i, ii,
iii, 6.4, 6.4, 6.4

[35] Ovidiu Daescu, Joseph S. B. Mitchell, Simeon C. Ntafos, James D. Palmer, and Chee-
Keng Yap. k-link shortest paths in weighted subdivisions. In Proceedings of the Ninth
Workshop on Algorithms and Data Structures, volume 3608 of Lecture Notes in Computer
Science, pages 325–337, Berlin, Germany, 2005. Springer-Verlag. 5.1

[36] Mark de Berg, Matthew J. Katz, A. Frank van der Stappen, and Jules Vleugels. Realistic
input models for geometric algorithms. Algorithmica, 34(1):81–97, 2002. 1

128

[37] Mark de Berg and Marc J. van Kreveld. Trekking in the Alps without freezing or getting
tired. Algorithmica, 18(3):306–323, 1997. 1.1, 3.1

[38] Mark de Berg, Marc J. van Kreveld, Mark Overmars, and Otfried Cheong. Computational
Geometry: Algorithms and Applications. Springer-Verlag, Berlin, Germany, 2nd edition,
2000. 2.1

[39] Ernesto de Queiros Vieira Martins. An algorithm for ranking paths that may contain
cycles. European Journal of Operational Research, 18(1):123–130, October 1984. 6.1,
6.1.4, 6.2

[40] Erik D. Demaine, Joseph S. B. Mitchell, and Joseph O’Rourke. The open problems
project. http://maven.smith.edu/~orourke/TOPP/. 1

[41] Camil Demetrescu, Stefano Emiliozzi, and Giuseppe F. Italiano. Experimental analysis
of dynamic all pairs shortest path algorithms. In Proceedings of the 15th Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 369–378, Philadelphia, PA, USA, 2004.
Society for Industrial and Applied Mathematics. 6.1.4

[42] Camil Demetrescu, Daniele Frigioni, Alberto Marchetti-Spaccamela, and Umberto Nanni.
Maintaining shortest paths in digraphs with arbitrary arc weights: an experimental study.
In Proceedings of the Fourth International Workshop on Algorithm Engineering, pages
218–229, London, UK, 2001. Springer-Verlag. 6.1.4

[43] Camil Demetrescu, Mikkel Thorup, Rezaul A. Chowdhury, and Vijaya Ramachandran.
Oracles for distances avoiding a failed node or link. SIAM J. Comput., 37(5):1299–1318,
2008. 6.1.4

[44] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959. 2.2.1, 2.2.3

[45] David Eppstein. Finding the k shortest paths. SIAM J. Comput., 28(2):652–673, 1999.
6.1.4

[46] Leila De Floriani, Paola Magillo, and Enrico Puppo. Applications of computational geom-
etry to geographic information systems. In Jörg-Rüdiger Sack and Jorge Urrutia, editors,
Handbook of Computational Geometry, pages 333–388. Elsevier Science Publishers B.V.
North-Holland, Amsterdam, 1998. 1

[47] Michael L. Fredman and Robert E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM, 34(3):596–615, 1987. 4.3.2, 4.4.2

[48] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, New York, NY, USA, 1990.
5.2, 5.6.6

[49] Andrew V. Goldberg and Chris Harrelson. Computing the shortest path: A∗ search meets
graph theory. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 156–165, Philadelphia, PA, USA, 2005. Society for Industrial and
Applied Mathematics. 6.1.4

129

http://maven.smith.edu/~orourke/TOPP/

[50] Andrew V. Goldberg, Haim Kaplan, and Renato Fonseca F. Werneck. Better land-
marks within reach. In Proceedings of the Sixth International Workshop on Experimental
Algorithms, volume 4525 of Lecture Notes in Computer Science, pages 38–51, Berlin,
Germany, 2007. Springer-Verlag. 6.1.4

[51] Luis Gouveia, Pedro Patŕıcio, Amaro de Sousa, and Rui Valadas. MPLS over WDM
network design with packet level QoS constraints based on ILP models. In Proceedings of
the 22nd Annual Joint Conference of the IEEE Computer and Communications Societies,
April 2003. 6.1.1, 6.1.4

[52] Sariel Har-Peled. Approximate shortest paths and geodesic diameter on a convex polytope
in three dimensions. Discrete Comput. Geom., 21(2):217–231, 1999. 2

[53] Sariel Har-Peled. Constructing approximate shortest path maps in three dimensions.
SIAM J. Comput., 28(4):1182–1197, 1999. 2

[54] John Hershberger and Subhash Suri. Practical methods for approximating shortest paths
on a convex polytope in R

3. Comput. Geom. Theory Appl., 10(1):31–46, 1998. 2

[55] John Hershberger and Subhash Suri. An optimal algorithm for Euclidean shortest paths
in the plane. SIAM J. Comput., 28(6):2215–2256, 1999. 2, 3.1

[56] John Hershberger and Subhash Suri. Vickrey prices and shortest paths: what is an edge
worth? In Proceedings of the 42nd Annual Symposium on Foundations of Computer
Science, pages 252–259, 2001. 1

[57] John Hershberger, Subhash Suri, and Amit Bhosle. On the difficulty of some shortest
path problems. ACM Trans. Algorithms, 3(1):5, 2007. 6.1.4

[58] Frederick S. Hillier and Gerald J. Lieberman. Introduction to Operations Research.
McGraw-Hill, 8th edition, 2005. 1

[59] Martin Holzer, Frank Schulz, Dorothea Wagner, and Thomas Willhalm. Combining
speed-up techniques for shortest-path computations. J. Exp. Algorithmics, 10:2.5, 2005.
6.1.4

[60] Biliana Kaneva and Joseph O’Rourke. An implementation of Chen & Han’s shortest
paths algorithm. In Proceedings of the 12th Canadian Conference on Computational
Geometry, pages 139–146, August 2000. 2.2.2, 3.6

[61] Sanjiv Kapoor. Efficient computation of geodesic shortest paths. In Proceedings of the
31st Annual ACM Symposium on Theory of Computing, pages 770–779, New York, NY,
USA, 1999. ACM Press. 2

[62] Samir Khuller, Kwangil Lee, and Mark A. Shayman. On degree constrained shortest
paths. In Proceedings of the 13th Annual European Symposium on Algorithms, pages
259–270, 2005. 6.1.4

[63] Mark Lanthier, Anil Maheshwari, and Jörg-Rüdiger Sack. Approximating weighted short-
est paths on polyhedral surfaces. In Proceedings of the 13th Annual Symposium on Com-
putational Geometry, pages 274–283, New York, NY, USA, 1997. ACM Press. 2, 2.3.1,
2.3.1, 2.3.1

130

[64] Mark Lanthier, Anil Maheshwari, and Jörg-Rüdiger Sack. Shortest anisotropic paths on
terrains. In Proceedings of the 26th International Colloquium on Automata, Languages
and Programming, pages 524–533, London, UK, 1999. Springer-Verlag. 2.3.2, 4.2.1, 4.2.2,
5.1

[65] Aaron W. F. Lee, David Dobkin, Wim Sweldens, and Peter Schröder. Multiresolution
mesh morphing. In Proceedings of the 26th Annual Conference on Computer Graphics
and Interactive Techniques, pages 343–350, New York, NY, USA, August 1999. ACM
Press/Addison-Wesley Publishing Co. 1

[66] Kwangil Lee and Mark A. Shayman. Optical network design with optical constraints
in IP/WDM networks. IEICE Trans. on Communications, E88-B(5):1898–1905, 2005.
6.1.1, 6.1.4

[67] Miguel S. Lobo, Lieven Vandenberghe, Stephen Boyd, and Hervé Lebret. Applications of
second-order cone programming. Linear Algebra and its Applications, 284:193–228, 1998.
3.3.3

[68] Andrew McGregor and Bruce Shepherd. Island hopping and path colouring with applica-
tions to WDM network design. In Proceedings of the 18th Annual ACM-SIAM Symposium
on Discrete Algorithm, pages 864–873, Philadelphia, PA, USA, January 2007. Society for
Industrial and Applied Mathematics. 6.1.4

[69] Joseph S. B. Mitchell. Geometric shortest paths and network optimization. In Jörg-
Rüdiger Sack and Jorge Urrutia, editors, Handbook of Computational Geometry, pages
633–701. Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000. 1, 3.1, 5.1

[70] Joseph S. B. Mitchell, David M. Mount, and Christos H. Papadimitriou. The discrete
geodesic problem. SIAM J. Comput., 16(4):647–668, 1987. 2, 2.1, 2.2.1, 2.2.2, 2.3.1, 3.1,
3.2, 3.3, 3.3.1, 3.3.1, 3.4.1

[71] Joseph S. B. Mitchell and Christos H. Papadimitriou. The weighted region problem:
finding shortest paths through a weighted planar subdivision. J. ACM, 38(1):18–73,
1991. 2, 2.3.1, 2.3.1, 2.3.2, 3.1, 3.3.2, 3.6

[72] Daniel Y. Mo, Raymond K. Cheung, Allen W. Lee, and Gil K. Law. Flow diversion
strategies for routing in integrated automatic shipment handling systems. IEEE Trans.
on Automation Science and Engineering, 6(2):377–384, April 2009. 1

[73] Esther Moet, Marc van Kreveld, and A. Frank van der Stappen. On realistic terrains. In
Proceedings of the 22nd Annual Symposium on Computational Geometry, pages 177–186,
New York, NY, USA, 2006. ACM Press. 4.5

[74] David M. Mount. On finding shortest paths on convex polyhedra. Technical Report 1495,
Department of Computer Science, University of Maryland, 1985. 2.2.1

[75] Joseph O’Rourke, Subhash Suri, and Heather Booth. Shortest paths on polyhedral sur-
faces. In Proceedings of the Second Annual Symposium on Theoretical Aspects of Com-
puter Science, volume 182 of Lecture Notes in Computer Science, pages 243–254. Springer,
1985. 2

131

[76] Christos H. Papadimitriou. An algorithm for shortest-path motion in three dimensions.
Inform. Process. Lett., 20:259–263, 1985. 2, 2.2.3, 2.2.3, 2.3.1, 2.3.1

[77] Valentin Polishchuk and Joseph S. B. Mitchell. Touring convex bodies—a conic pro-
gramming solution. In Proceedings of the 17th Canadian Conference on Computational
Geometry, pages 290–293, 2005. 3.3.3

[78] Franco P. Preparata and Michael I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, New York, NY, 1985. 1

[79] Rajiv Ramaswami and Kumar N. Sivarajan. Optical Networks: A Practical Perspective.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2002. 6.1.4

[80] John H. Reif and Zheng Sun. Movement planning in the presence of flows. Algorithmica,
39(2):127–153, 2004. 2.3.2

[81] Neil C. Rowe and Ron S. Ross. Optimal grid-free path planning across arbitrarily-
contoured terrain with anisotropic friction and gravity effects. IEEE Trans. Robot. Au-
tom., 6(5):540–553, 1990. 1, 2.3.2, 4.2.1

[82] Sasanka Roy. Algorithms for some geometric facility location and path planning problems.
PhD thesis, Indian Statistical Institute, Kolkata, India, 2008. 3.1

[83] Sasanka Roy, Sandip Das, and Subhas C. Nandy. Shortest monotone descent path prob-
lem in polyhedral terrain. In Proceedings of the 22nd Annual Symposium on Theoretical
Aspects of Computer Science, volume 3404 of Lecture Notes in Computer Science, pages
281–292, Berlin, Germany, 2005. Springer-Verlag. 3.1, 3.3.1, 3.3.1

[84] Sasanka Roy, Sandip Das, and Subhas C. Nandy. Shortest monotone descent path prob-
lem in polyhedral terrain. Comput. Geom. Theory Appl., 37(2):115–133, 2007. 3.1, 3.3.1

[85] Sasanka Roy, Sachin Lodha, Sandip Das, and Anil Maheshwari. Approximate shortest
descent path on a terrain. In Proceedings of the 19th Canadian Conference on Compu-
tational Geometry, pages 189–192, August 2007. 1

[86] Yevgeny Schreiber. Shortest paths on realistic polyhedra. In Proceedings of the 23rd
Annual Symposium on Computational Geometry, pages 74–83, New York, NY, USA,
2007. ACM. 3.1

[87] Yevgeny Schreiber and Micha Sharir. An optimal-time algorithm for shortest paths on a
convex polytope in three dimensions. In Proceedings of the 22nd Annual Symposium on
Computational Geometry, pages 30–39, New York, NY, USA, 2006. ACM. 2, 3.1

[88] Micha Sharir and Amir Schorr. On shortest paths in polyhedral spaces. SIAM J. Comput.,
15(1):193–215, 1986. 2, 2.2.1

[89] Zheng Sun and Tian-Ming Bu. On discretization methods for approximating optimal
paths in regions with direction-dependent costs. Inform. Process. Lett., 97(4):146–152,
2006. 2.3.2, 4.2.1, 4.2.2, 5.1

132

[90] Zheng Sun and John H. Reif. BUSHWHACK: An approximation algorithm for minimal
paths through pseudo-Euclidean spaces. In Proceedings of the 12th International Sym-
posium on Algorithms and Computation, pages 160–171, London, UK, 2001. Springer-
Verlag. 2.3.1

[91] Zheng Sun and John H. Reif. On finding energy-minimizing paths on terrains. IEEE
Trans. on Robotics, 21(1):102–114, 2005. 2.3.2, 2.3.2, 4.2.1, 4.2.2, 5.1, 5.4.1

[92] Zheng Sun and John H. Reif. On finding approximate optimal paths in weighted regions.
J. Algorithms, 58(1):1–32, 2006. 2, 2.3.1, 2.3.1, 4.2.1

[93] Vitaly Surazhsky, Tatiana Surazhsky, Danil Kirsanov, Steven J. Gortler, and Hugues
Hoppe. Fast exact and approximate geodesics on meshes. ACM Trans. Graph., 24(3):553–
560, July 2005. 1

[94] Stefan Szeider. Finding paths in graphs avoiding forbidden transitions. Discrete Appl.
Math., 126(2-3):261–273, 2003. 6.1, 6.1.4

[95] Mikkel Thorup. Undirected single-source shortest paths with positive integer weights in
linear time. J. ACM, 46(3):362–394, 1999. 6.1.4

[96] Mikkel Thorup. Equivalence between priority queues and sorting. J. ACM, 54(6):28:1–
28:27, 2007. 6.1.4

[97] Chris Upchurch, Michael Kuby, Michael Zoldak, and Anthony Barranda. Using GIS to
generate mutually exclusive service areas linking travel on and off a network. Journal of
Transport Geography, 12(1):23–33, 2004. 1

[98] Kasturi R. Varadarajan and Pankaj K. Agarwal. Approximating shortest paths on a
nonconvex polyhedron. SIAM J. Comput., 30(4):1321–1340, 2000. 2

[99] Daniel Villeneuve and Guy Desaulniers. The shortest path problem with forbidden paths.
European Journal of Operational Research, 165(1):97–07, 2005. 6.1, 6.1.4, 6.4

[100] Jiantao Wang, Lun Li, Steven H. Low, and John C. Doyle. Can shortest-path routing and
TCP maximize utility. In Proceedings of the 22nd Annual Joint Conference of the IEEE
Computer and Communications Societies, volume 3, pages 2049–2056, March–April 2003.
1

[101] Wilbert E. Wilhelm, Ivette Arambula, and Neil N. D. Choudhry. Optimizing picking
operations on dual-head placement machines. IEEE Trans. on Automation Science and
Engineering, 3(1):1–15, January 2006. 1

[102] Dianna Xu. Shortest paths on polytopes, 1996. Undergraduate thesis, Smith College.
3.6

[103] Uri Zwick. Exact and approximate distances in graphs—a survey. In Proceedings of
the Ninth Annual European Symposium on Algorithms, pages 33–48, London, UK, 2001.
Springer-Verlag. 6.1.4

133

	List of Figures
	Introduction
	Our results and organization of the thesis

	Background on Shortest Paths in Terrains
	Preliminaries
	Basic approaches
	Continuous Dijkstra approach
	Sequence tree approach
	Steiner point approach

	Relevant shortest path problems in terrains
	The weighted region problem
	The shortest anisotropic path problem

	Shortest Descending Paths: Towards an Exact Algorithm
	Introduction
	Terminology
	Characteristics of a shortest descending path
	Similarities with a geodesic path
	Uniqueness of an SDP through given faces
	An algorithm for SDPs through given faces using convex optimization
	Generalized Snell's Law
	Complete characterization
	An algorithm to trace an LSDP along a given initial direction
	Another algorithm for SDPs through given faces

	Sequence tree approach for SDPs
	Constructing a sequence tree
	Correctness of our construction
	Problems in approximating SDPs using sequence trees

	Polynomial time algorithms for special terrains
	Algorithm for pseudo-convex terrains
	Algorithm for pseudo-orthogonal terrains

	Conclusion

	Approximation Algorithms for Shortest Descending Paths
	Introduction
	Placing the Steiner points for SDPs
	Problems in placing Steiner points independently
	Problems in placing Steiner points in geometric progression

	Using uniform Steiner points
	Algorithm
	Correctness and analysis

	Using Steiner points in geometric progression
	Algorithm
	Correctness and analysis

	Conclusion

	Shortest Gently Descending Paths
	Introduction
	Terminology
	Properties of SGDPs
	Approximation using uniform Steiner points
	Algorithm
	Correctness and analysis

	Approximation using non-uniform Steiner points
	Correctness and analysis

	Hardness of SGDPs with few bends
	Overview
	Elementary gadgets
	The Path Bundle and its labeling
	Intermediate gadgets
	Main gadgets
	Correctness
	Constructing a terrain without vertical faces

	Hardness of SGDPs with limited total turn-angle
	Conclusion

	Shortest Paths avoiding Forbidden Subpaths
	Introduction
	Motivation
	Preliminaries
	Relaxation
	Related work

	A generic algorithm for a shortest s-t path
	Modifying the graph
	Constructing the tree

	Correctness and analysis
	Justifying the graph modification
	Justifying the tree construction
	Analysis of timing
	Relaxing the edges efficiently

	Algorithms for specific graph classes
	Computing shortest paths to all vertices
	Handling a weaker oracle
	Conclusion

	Conclusion
	References

