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Abstract

We consider the problem of determining shortest paths through a weighted planar polygonal subdivision
with n vertices. Distances are measured according to a weighted Euclidean metric: The length of a path
is defined to be the weighted sum of (Euclidean) lengths of the subpaths within each region. We present
an algorithm that constructs a (restricted) “shortest path map” with respect to a given source point. The
output is a partitioning of each edge of the subdivision into intervals of e-optimality, allowing an e-optimal
path to be traced from the source to any query point along any edge. The algorithm runs in worst-case time
O(ES) and requires O(E) space, where E is the number of “events” in our algorithm and S is the time it
takes to run a numerical search procedure. In the worst case, E is bounded above by O(n*) (and we give
an Q(n*) lower bound), but it is likely that E will be much smaller in practice. We also show that S is
bounded by O(n*L), where L is the precision of the problem instance (including the number of bits in the
user-specified tolerance €). Again, the value of S should be much smaller in practice. The algorithm applies
the “continuous Dijkstra” paradigm and exploits the fact that shortest paths obey Snell’s Law of Refraction
at region boundaries, a local optimality property of shortest paths that is well-known from the analogous
optics model. The algorithm generalizes to the multi-source case to compute Voronoi diagrams.

Key Words: shortest paths, terrain navigation, Voronoi diagrams, continuous Dijkstra algorithm, Snell’s
Law of Refraction, computational geometry
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1. Introduction

Algorithmic motion-planning for robotics involves several interesting geometric variants of the shortest path
problem. An important such problem is that of determining the shortest path between two points in the
plane in the presence of disjoint simple polygonal obstacles. This problem can be solved in O(n?logn) time
([Le, Mil, SS]) by standard visibility graph techniques, where n is the total number of vertices describing the
polygonal obstacles. Recent improvements in bounding the complexity of the shortest path problem include
an O(n?) bound ([AAGHI, We]), an O(nk + nlogn) bound [RS] (where & is the number of obstacles),
various output-sensitive bounds ([GM, KaMa, Mi3]), and optimal (©(nlogn)) bounds when the optimal
paths possess certain monotonicity properties ([LP, Mil}).

In this paper, we examine a new problem, a generalization of the two-dimensional shortest path problem
with obstacles, in which we now assume that the plane is subdivided into polygonal regions each of which
has an associated weight o specifying the “cost per unit distance” of traveling in that region. Our objective
is then to find a path in the plane that minimizes total cost according to a weighted Euclidean metric. The
shortest path problem with obstacles is easily seen to be a special case of the weighted region problem in
which the weights are either 1 or +oco depending on whether a region is “free space” or obstacle, respectively.
We refer to our generalized shortest path problem as the “weighted region problem”.

Our main result in this paper is a polynomial-time solution to the general Euclidean weighted region
problem. The input to our algorithm is a polygonal subdivision of size n, with integer weights (€ [0, +o0])
assigned to each face and each edge. We are also given a source point s and an error tolerance e. The
output of our algorithm is a labeling of each vertex with the length of an e-optimal path from s to it, and
a partitioning of each edge of the subdivision according to “intervals of optimality”, from which we can
construct an e-optimal path to any query point on any edge. '

The running time of our algorithm in the worst case is O(ES), where E is the number of “events” in
our algorithm and S is the complexity of solving a certain numerical search problem. The size of E is related
to the size of a “shortest path map”. In the worst case, we show that E = Q(n?), but we conjecture that £
will be much smaller in practice. We prove a worst-case upper bound of E = O(n?). (In an earlier version
of this paper, [Mil,MP], we erroneously claimed a bound of O(n3) on the size of E. Here, we correct our
mistake and show that in fact E has a lower bound of Q(n?) in the worst case, indicating that our upper
bound is best possible.) We give a numerical search procedure that shows that S can be bounded above by
O(n*L), where L is related to the number of bits necessary to encode the problem instance. In particular,
L = O(log(nNW/ew)), where N is the maximum integer coordinate of any vertex of the subdivision, 194
(resp., w) is the maximum finite (resp., minimum nonzero) integer weight assigned to faces of S, and € >0
is a user-specified error tolerance. Our upper bound on S is very generous; in practice, a fast and simple
numerical algorithm may be used. Thus, the worst-case running time of our algorithm is O(n®L), but since
the algorithm is, in a sense, output-sensitive, it is likely to perform well in practice. Our algorithm generalizes
immediately to the case of many source points to yield a Voronoi diagram structure within the same time
bounds.

Our reasons for considering the weighted region problem are two-fold: First, we wish to generalize the
theory of shortest paths to include this case. Second, we are motivated by an application in the field of terrain
navigation for an autonomous vehicle. Imagine a mobile robot (considered to be a point) whose objective is
to use a given terrain map to plan an optimal route through varied terrain from a source to a destination.
The terrain map might look like the diagram in Figure 1.1. Here, “optimal” may be taken to mean minimal
time. The robot can move at different speeds through different types of terrain (e.g., grassland, brushland,
forest, blacktop, water, etc.). The map segments the terrain into regions according to the ground cover (or
some traversability index). These regions may be modeled as polygonal patches. There may be roads given
on the map as well. Roads can be modeled as very skinny regions or as linear features (with an assigned
weight that is presumably much less than the surrounding regions). This path planning problem is solvable
by our weighted region algorithm.

As a further motivation for the weighted region problem, note that the problem we are trying to solve
is equivalent to a familiar problem in the calculus of variations. Define a piecewise-constant “cost” function
¢(+) from the plane into the real numbers. We wish to find a simple path, P, such that the line integral

/c(u(t)) 14 u'?(t)dt
P
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Figure 1.1. A map of varied terrain.

is minimal. So the weighted region problem is basically trying to solve a calculus of variations problem in
which the cost function is specified in some discrete manner (here, piecewise constant; in the conclusion we
discuss extensions to other cases), and we are measuring the performance of our algorithm as a function of
the complexity of the discrete representation.

The approach to the terrain navigation problem taken by many other researchers has been to discretize
the problem by laying down a grid on top of the surface ([Jo, KeMi, MPK, QFP), plus many others). This
produces a grid graph (with either 4- or 8-connectivity depending on whether or not we count diagonal
neighbors) of pixels each of which is a small square with sides equal in length to the fineness of the grid.
Costs may be assigned in the natural way to arcs connecting adjacent pixels of the grid. Then, Dijkstra’s
algorithm [Di] may be used to compute minimum cost paths in the grid graph. The problem with this
approach is that it may require extremely fine grids to capture the content of a simple map, and it creates
a digitization bias because of the metrication error imposed by confining movements to 4 or 8 orientations.
See [KeMi, MPK] for a more detailed discussion of digitization bias and the various possible remedies for it.
See [QFP] for a technique that uses grid graphs of multiple resolutions to design a hierarchical algorithm.

Another approach to the weighted region problem is to build a region graph in which nodes correspond

to regions an< =~ correspond to edges. Without loss of generality, we can assume that regions are convex,
since we < + decompose simple polygons into convex subregions. (Note that the grid graph approach
is reall :ase in which the regions are all squares of the same size.) Then we can think of placing a
ne ~nter” (e.g., center of mass) of a region. Two nodes are joined by an edge if the corresponding

adjacent. We then assign costs to arcs according to the weighted distance between adjacent nodes.
. g this graph for shortest paths yields a “region path” from the source to the destination, giving a
-quence of regions through which a “good” path should pass. We could then do some post-processing (e.g.,
using the local optimality criterion of Snell’s Law of Refraction from optics, which we will be discussing
later) to make the path locally optimal at region boundaries. The problem with this approach is that it can
produce paths that are not guaranteed to be optimal, or even close to optimal, for the optimal path need
not have any relationship to the shortest region-path. [Mi4] contains a brief discussion of this method.
Instead of applying heuristics to solve the problem, our goal in this paper is to compute paths that
are guaranteed to be optimal (within a user-specified error percentage €). Our approach is to apply the
continuous Dijkstra technique, which was originally developed in {Mil,MMP] as a means of solving the
Discrete Geodesic Problem (DGP): Find a shortest path between two points on a polyhedral surface, subject
to the constraint that the path remain on the surface. While there are many similarities between the
algorithm we give here and that of [MMP], there are many significant differences due to the complications
involved in our problem. Our presentation will attempt to make clear where the details of our weighted
region algorithm differ significantly from the algorithm of [MMP] for discrete geodesic paths on a surface.
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2. Definition of the Problem

We are given a straight-line planar (polygonal) subdivision, S, specified by a set of faces, edges, and vertices,
with each edge occurring in two faces and two faces intersecting either at a common edge, a vertex, or not
at all. We consider faces to be closed polygons (they include their boundaries) and edges to be closed line
segments (they include their endpoints, which are vertices). The edge e shared by faces f and f’ and oriented
so that f is on the right will be denoted e = N(f, f'); when we wish to speak of an undirected edge e, we
will write e = f N f’, without regard for the order of f and f’. We use int(-) to denote relative interior of
an edge or face.

We are also given two special points s and ¢ (the source and destination, respectively). We can assume
without loss of generality that all faces are triangles and that s and t are vertices of the triangulation. We
assume that S is stored in a data structure that allows the obvious simple operations (such as detecting the
edges incident to a vertex, in order about the vertex, and detecting the faces incident on an edge). See [GS]
for an example of such a data structure (the quad-edge data structure).

We concentrate here on the case of bounded subdivisions (a finite number of bounded regions); however,
the generalization of the algorithm to subdivisions with a finite number of (possibly) unbounded regions is
straightforward. We assume that S has n edges and, hence, O(n) triangular faces and O(n) vertices. Our
complexity measures will be written in terms of n.

We define a notion of length according to a weighted Euclidean metric. Each face f has associated with
it a weight oy € [0,+00] that specifies the cost per unit distance of traveling interior to face f. Similarly,
each edge e has associated with it a weight a. € [0,400]. The weighted length of a line segment joining
any two points ¢ and y on edge e is simply the product e|zy|, where |zy| is the usual Euclidean distance
between z and y. Likewise, the weighted length of a line segment joining any two points z and y on face
f (but not both on the same edge of f) is the product ay|zy|. The weighted length of a path through the
subdivision is then the sum of the weighted lengths of its subpaths through each face and along each edge.

If e is an edge shared by faces f and f’, then we usually will have o, = min{ay;, a;:}. This indicates
that when one travels on the boundary between f and f’, it is as if one is traveling “just inside” the cheaper
of the two regions. We may have a, < min{ay, o}, in which case it is actually cheaper to travel along the
boundary than interior to either of the two adjacent regions. This is a method of modeling a linear feature,
such as a road running through grassland (which is passable, but not as easily traversed as the road). It
never makes sense that min{a;,as'} < a, < 400, for then a path can be charged the weight min{ay, oy}
by traveling arbitrarily close to the edge e (but not actually on it).

The interpretation of an edge of weight +oo is that the edge should be a barrier. Hence, if a, = +o0,
then paths will not be allowed to cross edge e (this is a method of modeling a linear feature such as a fence
that is not crossable); however, we do allow a path to travel along the edge e, “just inside” one of the (two)
faces bounding e, at a cost per unit distance of ay or ay (depending on which “side” of e the path lies).
(One could think of a path crossing an edge e with @, = co as having a cost made up of a length of 0 times
a cost of +o00, which we will resolve to mean a cost of +00.)

A vertex v € fN f' is blocked between faces f and f' if there exist infinite-weight edges e and ¢’ incident
on v such that the chain ee’ “separates” f from f’, meaning that the elements e, ¢/, f, and f’ appear in the
order e, f, €', f' or e, f', €', f about vertex v. The interpretation is that paths cannot go from f to f’ through
the barrier (ee’) at the vertex v = e Ne’. We similarly define the notion of a vertex that is blocked between
edges or that is blocked between an edge and a face.

We assume that all parameters of the problem are specified by integers. In particular, all vertices v have
nonnegative integer coordinates. We let N be the maximum integer value for a coordinate. We also assume
that all weights are nonnegative integers (or 4+00), and we let W be the maximum finite weight and w be the
minimum non-zero weight (so a € {0, w, w+1, ..., W, +00}). Note that making these assumptions provides
no loss of generality from the case in which coordinates and weights are allowed to be any rational numbers,
for we could always rescale and shift coordinates and rescale the weights to be integers. The importance
of these assumptions will be seen in Section 8, where we discuss the numerical issues involved in solving a
certain subproblem.

We are asked to find the minimal-length (in the weighted sense) path from the source to the destination.
We will refer to such a path as a shortest path, with the understanding that “shortest” is taken according
to the weighted Euclidean metric. Our problem can now be stated formally.
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(WRP) WEIGHTED REGION PROBLEM

Instance: Two points s and t in the plane, a finite triangulation S in the plane, an assignment of weights
a. and ay to edges and faces, and an error tolerance € > 0.

Question: Find a path within S from s to t whose weighted Euclidean length is e-optimal among all paths
from s tot.

The problem we actually solve is the query form of the WRP, and from this solution we can solve the
WRP within the same time bound.

(SSWRP) SINGLE-SOURCE WEIGHTED REGION PROBLEM

Instance: One source point s in the plane, a finite triangulation S in the plane, an assignment of weights
@, and ay to edges and faces, and an error tolerance ¢ > 0.

Question: Build a structure (a “Shortest Path Map”) that allows one to compute an e-optimal path (in
the weighted Euclidean metric) from s to any query point t.

Two faces f and f’ are said to be edge-adjacent if they share a common edge e. A sequence of edge-
djacent faces is a list, F = (f1, fa, .- -, fx+1), of two or more faces such that face f; is edge-adjacent to face
i+1 (sharing common edge e;). We then refer to the list, £ = (e1,€2,...,€x), of edges e; = fi N fi41 as
an edge sequence and to the vertex of face f; that does not belong to e; as the root, r(£), of £. If no face
(resp., edge) appears more than once in F (resp., £), then we call the sequence simple.

A path is a continuous image of [0, 1] in the plane. We will be interested in piecewise-linear paths that
are simple (not self-intersecting). We can specify a piecewise-linear path by giving a list of points, p = (1,
..., T}), such that the path consists of line segments T;Z;47, 1 <@ < k— 1. A geodesic path is a path that is
locally optimal and cannot, therefore, be shortened by slight perturbations. An optimal path is a geodesic
path that is globally optimal. We will usually write p(z) to indicate an optimal path from the source (s) to
z, and we will write d(z) to indicate the length of p(z) (also called the depth of point x).

We say that path p passes through the interior of edge e = fN f’ at point y if there exist points z € int(f)
and z’ € int(f') such that FF C p and y2’ C p. We say that path p connects edge sequence £ = (ey, €3, ..., ex)
if p consists of segments that join interior points of e, es,...,ex (that is, p = (21, 22,..., 1), where point
x; is interior to edge e; and ZF;Z;37 C fi+1). (Note that such a path cannot pass through the endpoint of any
e;, for otherwise two distinct consecutive edges of £ would have to be colinear.) Path p goes through edge
sequence & if it has a subpath that connects £ (note that it may have many such subpaths, and we do not
require that &£ be simple).

3. Characterization of Geodesics and Optimal Paths

With our assumption that each region has a uniform weight, we are able to conclude that geodesic paths
will always be piecewise linear. (The case of nonuniformly weighted regions will be mentioned briefly in the
conclusion.)

Lemma 3.1  Geodesic paths are piecewise linear, except within regions of weight zero (where subpaths
may be arbitrary). The intersection of a geodesic path with the interior of a face with oy > 0 is a (possibly
empty) set of line segments.

Proof:  Simply note that if a subpath is contained in the interior of a face, then it must be a straight line
segment if the weight of the face is positive. 1

While geodesic paths are not necessarily simple paths, optimal paths must be simple, with the following
exception: within the interior of a face with zero weight, an optimal subpath can do anything whatsoever,
since travel is “free”. It is , however, always possible to replace any nonsimple subpaths in zero-weighted
regions with subpaths that are both piecewise-linear and simple. (For example, a path along the boundary
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Figure 3.1. A shortest path crossing a face many times.

of the zero-weighted region will suffice.) We can, therefore, limit our attention to geodesic paths that are
simple and piecewise-linear.

In the DGP, optimal paths also have the property that they do not go through any face more than
once (Lemma 3.2 of [MMP}). This, however, is not necessarily true in the WRP, for an optimal path may,
in fact, intersect a face in O(n) line segments. See Figure 3.1. Also, in the DGP, if v is a vertex, then an
optimal path from s to v can pass through the interior of at most one of the faces containing v (Lemma 4.1
of [MMP]). However, in the WRP, this no longer holds. See Figure 3.2. The basic problem is that in the
WRP the shortest path between two points z and £’ interior to a face f is not necessarily the line segment
connecting them. See Figure 3.3. Note that geodesic paths (in both the WRP and the DGP) can intersect

a single face in many line segments.

Figure 3.2. An optimal path to v passing through many faces adjacent to v.

Assume for the moment that o, = min{ay,ay/} for edge e = fN f'. Then, there is a simple property of
geodesics (observed by [Ly], as well as by many others) that says that a geodesic path that passes through
the interior of e must “bend” at the edge according to Snell’s Law of Refraction for light. This is the local
optimality criterion for the weighted region problem and is analogous to the fact that geodesic paths in three
dimensions unfold into straight lines.

Snell’s Law of Refraction. The path of a light ray passing through a boundary e between regions f and
# with indices of refraction «y and oy obeys the relationship that oy sin@ = oy sin @', where 6 and 6’ are
the angles of incidence and refraction (respectively).

The angle of incidence, 8, is defined to be the counterclockwise angle between the incoming ray and the
normal to the region boundary. (We consider the normal to be a vector perpendicular to the boundary, and
it is oriented from the incoming region toward the outgoing region.) The angle of refraction, ¢, is defined
as the counterclockwise angle between the outgoing ray and the normal. Refer to Figure 3.4.

Remark: There is another physical analogy that can be made to illustrate the local opti-
mality criterion. Consider the system of weights, pulleys, and ropes shown in Figure 3.5.
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Figure 3.3. Shortest path from z € f to ' € f is not given by segment zz’.

Figure 3.4. A light ray crossing a boundary.

The ropes are tied to a ring that slides (without friction) on the wire along edge e. The
tensions in the ropes are ay and ays, the weights of the masses being suspended on either
rope. Then the shortest path from the center of one pulley to the center of the other
pulley is given by the path of the ropes when in equilibrium. (We assume that the radius
of the pulleys is negligible.)

The fact that light obeys Snell’s Law comes from the fact that light seeks the path of minimum time
(this is Fermat’s Principle). The index of refraction for a region is proportional to the speed with which light
can travel through that region. Hence, the shortest paths in our weighted region problem must also obey
Snell’s Law. This can be shown formally.

Lemma 3.2 Assume that o, = min{ay, oy} and that ay,ap < +oo. If p is a geodesic path that passes
through the interior of edge e, then p obeys Snell’'s Law at edge e.

Proof: The proof is a straightforward single-variable calculus problem. Refer to Figure 3.6. The function

we wish to minimize is
F(z)=azyJz?2 + Y +ap/(z1 — )2 + 9y

Clearly, F attains its minimum on [0,z,], and it is easy to check that F' is a strictly convex function on
[0,z;]. The condition that F'(z*) = 0 becomes simply

N z* N (z1 —z%)
e = ay ,
Vol + 33 Ve —z*)2 +yi
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Figure 3.5. Physical model of local optimality criterion.

which implies that
apsind = ay sind’.

It is easy to check the boundary points to see that * = 0 (resp., * = 1) if and only if oy = 0 (resp.,
ay = 0), showing that the above relationship still holds in these special cases. 1

Figure 3.6. Snell’s Law of Refraction: Local optimality criterion.

When applying the relationship specified in Snell’s Law, we must be careful that it is well-defined.
Without loss of generality, assume that ay > ¢ > 0. Then, we must assure that

—1<sinf' = 2 sino<1.
CYfl

Let e = N(f, f') be the oriented boundary between regions f and f’. The angle, 8.(e) = 6.(f, f"), at which
ay .
=L sinfd.(f, )] =1
af:

is called the critical angle defined by e. Critical angles come into play whenever we are considering geodesic
paths going from one region (f) to a less expensive region (/). If @y > 0 and s > 0, then the critical
angle is defined and is given by 8.(f, f') = sin"*(ays /ay), provided that ay > aj:. If ay = ayr = 0, then
a geodesic path can “bend” at ¢ in any way whatsoever, since motion in regions f and f’ is “free”. If
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ajr = oo or if &y = 0, then there is no need to define 0.(f, f') (we could define it to be 7/2). (If ay = +o0,
then our path p had no business being in region f in the first place!)

A ray of light that travels through f to strike e at the critical angle will (theoretically) travel along e
rather than enter into the interior of f/. We can think of it as if the light ray wishes to be “just inside” the
“cheap” region on the other side of e. A light ray that hits e at an angle of incidence greater (in absolute
value) than 6, will be totally reflected from the point at which it hit the boundary. The light ray would
leave the boundary at an angle of reflection equal to the angle of incidence.

In our problem, there can be no such reflections for geodesic paths. A geodesic path will never be incident
to an edge at an angle greater (in absolute value) than the critical angle. The only form of “reflection” of a
geodesic path is that which takes place at the critical angle in the following way: A path is incident (from
face f) on edge e at the critical angle 8 = §. at point y € int(e), it then travels along edge e for some positive
distance (in the direction of its orientation), and then exits edge e back into face f at point y' € int(e),
leaving the edge at an angle 8’ = 6.. See Figure 3.7. We will then say that the path is critically reflected
by edge e and that segment yy’ is a critical segment of p along e. The phenomenon of critical reflection is
not just an unlikely event of degeneracy. It is commonly the case that the shortest path between two points
consists of a single critical reflection along an edge (for example, the shortest path from s to ¢ in Figure 3.7
is given by the path of critical reflection).

Figure 3.7. A geodesic path that is critically reflected.

Summarizing the behavior of geodesics with respect to critical angles, we get the following lemma:

Lemma 3.3  Assume that ¢ = N(f,f’) and o, = min{ay, 0y} = ay. If a geodesic path p passes
through the interior of edge e, then the angle of incidence is less (in absolute value) than the critical angle
8. = 0.(f,f). If p contains the subpath (z,y,z’), where ¢ € int(f), y € int(e), and ¢’ € fN f' (or

—
2’ € int(f), y € int(e), and z € fN f'), then the angle (measured counterclockwise) from yZ to yz' is
tLzyz' = 0.+ w/2. Thus, if p travels along some part, yy', of e (where y,y’ € int(e)), then the angle of
incidence at point y equals the critical angle 8., and the angle of exit at y' must also equal 6.

Proof:  The proof follows immediately from the proof of Lemma 3.2. Simply put 3 = 0, so that the
probem is to minimize the distance from point (0, —yo) to point (x1,0) on the boundary e. Then Snell’s Law
gives 6 = 0.(f, f'). This also implies that a path will never hit a boundary at an angle greater (in absolute
value) than 6.. 1

If @, > min{ay, ay }, then a geodesic path will never travel along edge e, since it would be better to
travel “just inside” either region f or region f' (whichever is cheaper). A geodesic path that crosses through
the interior of edge e behaves just as if o, = min{ay,ay}. In case @, = +0o0, we have assumed that e
behaves like an obstacles, so that a geodesic path cannot cross through edge e; thus, p Ne must be either e,
an endpoint of e, or the empty set.

In case @, < min{ay,a;}, the local optimality condition takes on a slightly different form. How does
a geodesic path cross a boundary whose cost is less than that of the regions on either side of it?

9



It may now be possible for the geodesic path to hit edge e at the incoming critical angle 6.( f,e) =
sin~!(a./ay) at point z € int(e), then travel along edge e for some distance, then leave edge e into fat
the outgoing critical angle 8.(f',€) = sin~!(a./ays) at a point 2’ € int(e). See Figure 3.8. We will then
say that the path has critically used edge e along the critical segment zz’. If one thinks of the edge e as a
“road” that is relatively “fast moving” in comparison with the regions on either side of it, then one can say
that the path “hitched a ride” along the road before crossing it. It is also possible, of course, for the path
to be critically reflected by e from either region f or region f'.

(x4, ¥4}

0,y

Figure 3.8. Shortest path “hitching a ride” on a road.

More formally, we can solve a simple two-variable minimization problem:

Lemma 3.4 Assume that o, < min{ay,ay}. A geodesic path that crosses edge e will do so in one of two
ways: It will either intersect edge e at one point of crossing and obey Snell’s Law at that point, or it will hit
edge e at the incoming critical angle 8.(f,€) = sin™Y(a./ay), travel along the edge for some distance, and
then exit the edge (to the other side) at an outgoing critical angle 0.(f',e) = sin™H(ae/ays).

Proof: The proof is a simple two-variable calculus problem. Refer to Figure 3.8. We wish to minimize

the function
F(z,2') = ayy/2? + v} + au(a’ = 2) + apy/(m1 = 2)? + 4

z<z.

subject to

Clearly, F' attains its minimum for values of = and z' that are nonnegative. Also, one can easily check that
F is strictly convex. The Kuhn-Tucker conditions at point (z,z’) give

T z—x
g s e T Ay AV
22 + 42 Vizr = 2')? + yi

oy
or, in terms of angles,
apsind = a, = aypsinf’,
if the Lagrange multiplier is zero. This simply says that the incoming angle must be the critical angle 6.(f,€),
and the outgoing angle must be the critical angle 8.(f’,¢). The Lagrange multiplier will be zero if and only
if
yotan0.(f,€) + y1 tanbc(f',€) > z1,

(ae/af) (aé/af')
Vs e Y e ey o o

If the above inequality does not hold, then the Lagrange multiplier is not zero, and we get that z = 2’ and

that is, if and only if

Zy.

aypsind = oy sing’.
In this case, then, the path crosses the edge at the single crossing point z = z = z’, and obeys Snell’s Law
while doing so. 1
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Let p be a geodesic path. In general, the set p M e will be either empty, the whole edge e = [v, V'],
or consist of a set of pomts and segments {z1,...,2x} U {ylyl, . ,y_,y]} where v < 23 < ... < 2z < v and
v <y <Y <...<y; <y; <V (the order used here is the linear order along the line through the oriented
edge e). The pomts z; are called crossing points of edge e for path p, and the segments vyl y} are called shared
segments for e and p. In summary, we can now fully characterize the behavior of geodesic paths at edges.

Proposition 3.5 (Local Optimality Criterion) Let p be a geodesic path through a weighted finite
triangulation S. Consider any edge e of S.

(a). (Edge obstacles) If a. = +oo, then pNe is either the entire edge e (meaning that p travels
arbitrarily close to e), an endpoint of e, or the empty set;

(b). (Crossing points) If p passes through the interior of edge e at a crossing point z € int(e), then
p obeys Snell’s Law at z, namely, ay sinf = ay sin @', where 8 is the angle of incidence from region f and ¢’
is the angle of refraction into region f'. If min{ay, as} < a. < 400, then, without loss of generality, assume
that oy < ay. Then |0] < 0.(f, f'). If 0 < ae < min{oy, oz}, then |0] < 0.(f,¢) and |0'] < 0.(f',¢).

(c). (Shared segments) Assume that p shares a segment yy’ with edge e. If y is not a vertex, then
the angle of incidence at y is critical: if p strikes y from the side of f (wlog), then ay > min{a., oy} and
the angle of incidence is either 6.(f,e) (if a. < ays1) or 8.(f, f') (otherwise). Similarly, if y' is not a vertex,
then the angle of exit at y' is critical.

Prooi: Apply Lemmas 3.2, 3.3, and 3.4. |1

The local optimality criterion is sufficiently strong that it uniquely specifies a geodesic path that connects
an edge sequence:

Lemma 3.6 If p is a geodesic path through regions with «; > 0 from a point s to a point x that connects
edge sequence £ = (ey, ..., e;) with e; # e;41 (so that there are no shared segments), then p is the unique
geodesic path, and it obeys Snell’s Law at each crossing point of each edge.

Proof: The proof uses the following fact: The function that gives the weighted length of the path that goes
from point s to point t while connecting the edge sequence & is a strictly convex function of the coordinates
of the crossing points at each edge. (Assume that the weights are positive in the sequence of faces, and that
s and t do not lie on the first and last edges of £; otherwise, the function will still be convex, but possibly
not strictly so.)

We begin with a proof of the above fact. The weighted length of the path from s to ¢ that connects
edge sequence £ = (e, ..., €x) is given by

g(u) = g(ui,...,ux) = a1|sUs] + Z @it1|{UiUigr| + a1 |Ust],
1<i<k-1

where U; is the point on line ¢ at coordinate u; € ®! on that line. We wish to show that g is strictly convex.
It is easy to check that |sU;]| is a convex function of u; (and, likewise, |Uit] is convex in uj). One can also
check that |U;Ui41] is a convex function of the two (scalar) variables u; and u;41. Also, these functions are
strictly convex as long as s € e;, t & e, and edges e; and e;,; are not parallel (which is indeed the case for
edge sequences of the triangulation). Thus, since o; > 0, g is strictly convex.

Since function g(u) is strictly convex, it possesses a unique global minimum, and any local minimum
must be global. Since p is a local minimum, it is also the global minimum connecting the edge sequence,
and we already know (Proposition 3.5) that it obeys Snell’s Law at each crossing point. 1

This lemma tells us that we can use Snell’s Law to do ray tracing as follows. We begin with an angle
¢ and a point r. Follow a ray eminating from r at angle ¢ (where ¢ is measured counterclockwise from the
positive z-axis) until it hits an edge e;. Pass through edge e; while obeying Snell’s Law, thereby obtaining a
ray on the other side of e; that continues at some known angle. Continue tracing rays and passing through
edges according to Snell’s Law until either (1) the angle of incidence to an edge is greater than or equal (in
absolute value) to the relevant critical angle, or (2) the ray hits a vertex. We refer to the (unique) path
obtained by doing this ray-tracing as the refraction path from r at angle ¢. A refraction path is specified
uniquely either by giving r and @, or by giving r, a point z through which the path is to pass, and the
edge sequence £ through which to go to hit z. In particular, we could specify r and a point £ € ey, and
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do ray tracing from r through z. This can be done in a straightforward manner using only the arithmetic
operations (+, —, *, and +) and the square root function, avoiding calculations of sines and inverse sines.
We will describe later the function Find-Point, whose objective is to find the refraction path for a given 7,
z,and &£.

Remark: It is tempting to think that we could just do a one-dimensional search in ¢ to

determine a shortest path from s to ¢: simply find the values of ¢ that yield refraction

paths from s that go through point ¢, and pick the one that gives the shortest path. The

problem with this is that it ignores the effects of critical angles and paths through vertices.

Basically, once a refraction path hits an edge at the critical angle, or hits a vertex, we

no longer have complete information about where it goes next. It can travel along part

of an edge and then get off at the critical angle, or it can pass through a vertex in many

possible ways. The analogy with ray optics (which gave us our local optimality criterion)

breaks down here, for in a real physical system we cannot apply ray optics to determine

uniquely what happens to light rays at vertices and critical angles.

In the DGP, geodesic paths went through an alternating sequence of vertices and edge sequences
(Lemma 3.5 of [MMP]). In the weighted problem, we have an additional complication with which to deal:
critical points. For a geodesic path p, a point y € pN int(f N f') is called a critical point of entry of path p
from face f if y is the closer (to the source, s) of the two endpoints of a shared segment yy', and p hits y
from the side of f; that is, y is interior to the edge e = f N f' and is such that the angle that path p makes
at y is critical: Zzyz' =0.+ n/2, where TF is the segment of p leading into y, vy’ C e is the shared segment
of p leading out of y along e, and 0, is either 0.(f,€) (if e < aye) or 6.(f, ') (otherwise). Similarly, a point
y € pNint(fN f') is called a critical point of exit of path p into face f if ¥ is the further (from the source,
s) of the two endpoints of a shared segment yy’ and p goes from y' into face f.

Let v and v’ be consecutive vertices encountered in the list of points describing a geodesic path p. Based
on the characterization of geodesic paths we have so far (Proposition 3.5), we can make a simple observation
about the structure of a geodesic path between v and v'. The subpath of p between vertices v and v’ will,
in general, be a (possibly empty) list of crossing points, followed by a critical point of entry to an edge and
a critical point of exit from that edge, then another (possibly empty) list of crossing points, followed by
another critical point of entry, etc. For example, the subpath between v and v’ might be (v, 21 € int(e1),
7o € int(ea), y1 € intles), yi € int(es), z3 € int(eq), Y2 € int(es), yb € int(es), v'), where the z;’s are
crossing points and the ¥;’s (y{ ’s) are endpoints of shared segments. Refer to Figure 3.9. Alternatively, we
could specify the subpath between v and v’ by giving the list (v, &1, y1, Y1, €2, Y2, Y5, €3, V'), where &; = (e1,
e3), £2 = (ea, €5), and &3 = 0. (This follows from Lemma 3.6, since the edge sequence &; and the points v
and y; uniquely specify the geodesic path that connects £;.) Now note that the subpath between v and v/
is, in fact, uniquely specified just by giving the list (v, f1, f2, fa, €3, fa, €5, v'). More generally, a geodesic
path p from s to = may be specified uniquely by giving a list of vertices, edges, and faces whose relative
interiors contain a portion of p. (Edges and faces may be repeated in this list.)

v Y.
v % 2
f 2 te
12 ° i, Z3 ©1 @
e, z,
o, ¥
Y4

Figure 3.9. Specifying a path between v and v'.

We will see in Lemma 3.7 that the situation depicted in Figure 3.9 actually cannot occur, since we can
show that between two consecutive vertices on a geodesic path there can be at most one shared segment.
First, however, we need some more notation and facts.

Marching back from z along p, let 7 be the first vertex or critical point of entry we encounter. We call r
the root of path p. (In the example of Figure 3.9, y2 is the root of the path p.) We call the (possibly empty)
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edge sequence crossed by p between r and z the last edge sequence of path p. If p is a geodesic path to point
z that has last edge sequence £ and root r, then we let d, ¢(x) be the weighted distance from r to z along
p. Note that by the local optimality criterion, this distance is uniquely determined by r, z, and £.

We will show that the alternating lists of crossing points, shared segments, and vertices have some special
structure. We first establish the notation in Figure 3.10. Consider the refraction path from s through the
edges ey €1y, e9 €1y, ..., e7 € I;. We consider each line to be oriented from left to right in the sense seen by
an observer walking along the path. The coordinate, u;, is the (unweighted) distance from the left endpoint
of the edge e; to the crossing point. The region between edge e;_; and edge e; has weight «; € (0, +00). We
assume for simplicity that the weights on the edges themselves equal the minimum of the weights on either
side; we need not assume this, but the other cases are messy and not especially enlightening. Angle ¢; is the
counterclockwise angle from [;_; to l;. Angle 6; is the angle of incidence of the path at edge e;, while angle
8; is the angle of refraction at edge e;. Of course, we must have |0;| < 8.(fi, fix1) if @ > a;y1. The length
of edge e; is called A;. Finally, L; is the (unweighted) Euclidean length of the path between edge e;—1 and
edge e;.

o
’ 1
6
q)7
1
¢, o 3
6
(ls 5
o 3 g
¢5
[} 's
3
o o
4 3
1
93 " "2 ¢
u
2 351
¢ a|+l
3 L a
¢ 2 2 o
2 f, i
> |
u 1
¢1 1 o
1
M msemsssnsss u|
r=u
0 1, A »

Figure 3.10. A refraction path passing through the triangulation.

Now we can make a few simple observations that will be of use later. We assume in the following claims
that 0 < oy < +00.

Claim 1. FEach coordinate u; is a linear function of ug (we hold all other parameters fixed).

Proof:  First, ug is trivially a linear function of ug. Now assume that u; is a linear function of uy. We
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consider two cases. First, if ¢x41 > 0, then we get, by the Law of Sines,

— Ug
Up 41 = €O8 O —rr—
cos O 41

_ cos(grt1 — Ok+1) "
cos Og41

y

which shows that ugy; is also a linear function of ug. If ¢g41 < 0, then we have instead that

= Ap — Ug
Ak41 — Uk41 = €OS O ——
0059k+1

— COS(¢k+1 - 9k+1)(>\k _ uk)
COS 0k+1

b

showing that ugy; is again a linear function of ug. 1

Claim 2. LetL = Zf__l a; L; be the weighted path length from point r to point ug . Then, L is a linear
function of ug.

Proof: This follows simply from Claim 1 and the fact that, foreach 12> 1,

Us
Li = sin § ——
n ¢ cosfi_1 {
if ¢; > 0, and \
Li = sin ¢ ——="1,
cos B
iféd; <0. 1

The following two claims show that the refraction paths, parameterized by 8; (the first angle of incidence)
or by uy (the first crossing point), sweep out a “wedge”: as 0 is increased, the refraction path moves
continuously to the “right”.

Claim 3. The angle of incidence on edge i, 6;, is a continuous monotone increasing function of . (and
hence of uy), the angle of incidence on the first edge in the sequence, over any interval of 0, for which the
refraction path exists through the given sequence of edges.

Proof: Snell’s Law at edge ¢ yields _
a;sin by = ajprsinb;.
But we also have -
Oit1 = diy1 + 0

TR -7
= ¢i41 +sin”! [ *—sin 9,-] ,
Qi1

which shows that if 6; is monotone increasing and continuous in 61, then so is 6;4;. This follows since sin @
(resp., sin~! ) is monotone increasing on the interval 6 € [-7/2,7/2] (resp., z € [~1,1]). By induction and
the fact that 8, is trivially monotone in 6y, we are done.

Claim 4. The crossing point on edge i, u;, Is a continuous monotone increasing function of §; (and hence
of uy ), over any interval of 6 for which the refraction path exists through the given sequence of edges.

Proof: Clearly, u; is a monotone increasing function of ;. Now assume that u; is increasing in 6;. We
consider two cases. First, if ¢;41 > 0, then
cos(fiy1 — ¢i+1)u-
cos ;41 '
= 9(054-1)“57

Uil =
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where g(-) is an increasing function, since

Sin Gi+1

!
0; = .
g'(0i41) cos? ;41

But we already know that ;,; is increasing in #;, so u;4; must also be increasing in 8;. Now, if ¢;4; <0,

then ® bit)

COS(Vip1 — Pi41

DAL LALEA CTEID ¥
cos b;41 (u )

= Xig1 + 9(0ip1)(ui — Xy),

where, again g(-) is the increasing function defined above. Again, we have that u;;; is increasing in 61. 1

Uit1 = Aip1 +

The next lemma is an important fact about critical points along geodesic paths. It will be needed later
to prove facts about the complexity of our algorithm.

Lemma 3.7 Let p be a geodesic path. Then either (1) between any two consecutive vertices on p, there
is at most one critical point of entry to an edge e, and at most one critical point of exit from an edge ¢’
(possibly equal to e); or (2) the path can be modified in such a way that case (1) holds without altering the
length of the path.

Proof: Assume the claim is false. Then, there is a geodesic path that has two shared segments (on edges
e; and ez) between which there are no vertices. Refer to Figure 3.11. The length of the subpath between
critical point of entry y; and critical point of exit y} can be written as a linear function of the point y; (for
a fixed sequence of edges through which the subpath passes and a fixed angle of exit at y{). The length
is simply given by ae, |y1y}| plus the path length from y] to y2 plus a.,|y2y5|; by Claim 2, this is a linear
function of the coordinate of ¥} on edge e;. We know that the subpath is uniquely specified by giving point
y; and the sequence of edges through which the path passes on its way from y{ to ya, since we know that
the subpath exits edge e; at the critical angle.

i
Y

Y, Y

Figure 3.11. Proof of Lemma 3.7.

A linear function defined on an interval attains its minimum at an endpoint of the interval. (Of course,
if it is flat, the function may attain its minimum everywhere in the interval.) Thus, we could slide the point
y} along e; in some direction, without increasing the length of the subpath as we move it, and continue this
motion until either y} coincides with y;, or until the subpath hits another vertex. In either case, we either
keep the length of the path the same or we get a local improvement of the original path. (Note that if this
local improving operation slides y} until it coincides with y;, then the path should not have shared a segment
with edge e; in the first place.) 1

Note that an immediate consequence of this lemma is that the path shown in Figure 3.9 between v and
v’ cannot be geodesic, since it has two shared segments between the (consecutive) vertices v and v'.

Remark: Note also that in order for a path to have several shared segments between two
consecutive vertices the edges of S and the region weights have to be arranged in a very
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special way. Indeed, when a path leaves one edge at a critical angle, the chances are small
that it will strike another edge at exactly its critical angle. Thus, the case addressed by
the above lemma is in some sense degenerate.

In summary, we have the following characterization of geodesics and optimal paths through weighted
regions:

Proposition 3.8 In the absence of zero weights, the general form of a geodesic path or an optimal
path is a piecewise linear path that goes through an alternating sequence of vertices, (possibly empty) edge
sequences, and shared segments such that the path obeys Snell’s Law at each edge along any edge sequence
and it obeys the local optimality criterion at the endpoint of each shared segment. Furthermore, between
any critical point of exit and the next critical point of entry along the path, there must be a vertex. In the
presence of zero weights the same characterization holds, except that optimal paths may be arbitrary within
zero-welghted regions.

4. Locally f-Free Paths and Intervals of Optimality

In the solution to the DGP, we made use of the concept of an f-free path to points on the boundary of a
face f. In the weighted region problem, however, we will need the notion of a locally f-free path: Given a
face f and e, one of its three edges (recall that (e, f) is an edge-face pair), a locally f-free path to z € e is
defined to be a geodesic path p from s (the source point) to z such that there exists a é > 0 so that the path
does not pass through the intersection of the interior of f with the ball of radius é centered at z. Intuitively,
a locally f-free path to a point z € e “hits z from the exterior of face f” and is locally optimal. The reason
we require the local optimality of path p in the definition is that we need to rule out a path that is locally
f-free only because it crossed e from f into the interior of face f’ opposite f and then immediately “turned
around” to hit z from the side of f’ (such a path could be locally shortened into a locally f'-free path to z).
A shortest locally f-free path to z, denoted by ps(z), is a locally f-free path to z that has minimal length
among all locally f-free paths to z.

Because an optimal path to a point z on the interior of e = fN f must be either locally f-free or locally
f'-free, it may be obtained from a shortest locally f-free and a shortest locally f’-free path to z:

Lemma 4.1  Let ps(z) (resp., ps(z)) be a shortest locally f-free (resp., f'-free) path from s to z €
int(f N f'). An optimal path to z is given by the shorter of ps(z) and ps ().

Another important property of shortest f-free paths for the DGP is that they are not allowed to cross
(Lemma 4.3 of [MMP]). This is not true for locally f-free paths in the weighted region problem, as illustrated
in Figure 4.1. Rather, we now have that shortest locally f-free paths cannot cross while “going in the same
direction”. More precisely, we get the following lemma:

-

<<~
V4

x

Figure 4.1. Crossing locally f-free paths.
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Lemma 4.2

(1) Optimal paths and shortest locally f-free paths are simple.

(2) If p(x) and p(y) are optimal paths from s to points = and y, then they can intersect only at
vertices of S, and if they do intersect at v, then that subpath of p(z) from s to v has the same
length as that subpath of p(y) from s to v.

(3) Let ps(z) and ps(y) be two shortest locally f-free paths to points z and y on edge e = fN f.
Consider the segments of each path to be oriented in the direction of the path from the source.
Then if an (oriented) segment of ps(z) and an (oriented) segment of p;(y) are both incident
on some edge e, and both segments belong to the same face f., then those segments cannot
cross.

Proof:

The proof of the first claim is easy: if a path is not simple, then it can be locally improved (and kept
f-free). The proof of the second claim is also easy and follows the proof given in [MMP] for the DGP
(Lemma 4.3 of [MMP]). For the third claim, note that if the segments crossed at some interior point, v,
of f., then the two subpaths from s to ¥ must have equal lengths (otherwise, one path could be locally
improved while remaining locally f-free). Then, each path could be improved by “shortcutting” around v
(e.g., from a point w € int(f,) on the subpath of p;(z) before v to a point z € int(f,) on the subpath of
ps(y) after ), and because the two paths were both “going the same direction” when they passed through
~, the resulting improved path could be locally adjusted so that it will again be geodesic and still be locally
f-free. (The reason this does not work in showing that two shortest locally f-free paths cannot cross at all
is that if the paths were going different “directions” at the crossing point, so the segments are incident on
different edges of f. then the improved path could become non-locally f-free once it is perturbed into local
optimality. Such would be the case if ¥ € f' = f. and the segment of the path that reaches v first were not
incident on e, while the other segment were incident on e. Refer again to Figure 4.1.) A similar argument
applies to the case in which the crossing point + lies interior to an edge, since we can simply shortcut around
v with a refraction path instead of a direct path. 1

Analogous to Lemma 4.4 of [MMP], we get the following result:

Lemma 4.3 Let (e, f) be any edge-face pair, and let py(z) be any shortest locally f-free path from s to
¢ € int(e). Let r be the root of py(z) and let £ be the last edge sequence of ps(x). Then, the set I of
points on e for which there exists a shortest locally f-free path to z with root r and last edge sequence £ is
connected (and, therefore, a subsegment of e).

Proof: Let y and y be points of e such that there exist shortest locally f-free paths p;(y) and ps(y’)
with root » and last edge sequence £. Then we wish to show that if z is a point of e between y and y’, then
there is a shortest locally f-free path py(z) that also has root r and last edge sequence & (in fact, we show
that ps(z) is unique). Let ps(z) be any shortest locally f-free path to z. Now, march back from z along the
path ps(z). Refer to Figure 4.2. (Although the figure shows the case in which r is a vertex, the argument
we are about to give works equally well for the case of r being a critical point of entry of some edge.) The
first line segment of p;(z) we encounter cannot take us into face f (by definition of locally f-free paths).
Thus, the segment must take us through face fx41. Also, the segment cannot cross paths ps(y) or ps(y')
(Lemma 4.2), so it must cross edge ex at a point in between the points yx and y% . Continuing this march
back through edges ex_i, ..., e1 yields the fact that path ps(z) must stay “in between” paths p;(y) and
ps(y') until the root r is reached (or, if ris a critical point of entry, until the corresponding critical point of
exit of p;(2) is reached). Thus, ps(z) must pass through the same set of edges as the paths ps(y) and py(y')
do along their last edge sequences. Also, ps(z) must have root r. Thus, z € Z, and we are done. I

The interval Z of points can be open, closed, or half open and half closed. Let the subsegment I = [a, b]
be the closure of Z. (Normally, we would write I = ab to indicate the segment with endpoints a and b;
however, we write [a,b] to emphasize the fact that coordinate values can be attached to points of e, and T
can be thought of as an interval of these coordinates.) The endpoint a (resp., b) is the one on the left (resp.,
right) when viewed looking into face f.
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r

Figure 4.2. Proof of Lemma 4.3.

We call I the interval of optimality for (r,£) with respect to (e, f). It describes the subset of an edge
for which the shortest locally f-free paths to the edge have the same discrete structure (going through the
same sequence of edges, after coming through the same root). Our algorithm will find the subdivision of
each edge into its intervals of optimality with respect to both edge-face pairs defined on the edge. The set
of intervals of optimality can be thought of as the restriction of the “shortest path map” (with respect to s)
to the edges of the subdivision §. (Actually, our subdivision into intervals will be according to e-optimality,
for a user-specified error tolerance ¢. See section 8.)

Note that r may be an endpoint of e (and hence of I) in the degenerate case. Let us establish the
convention that £ does not include the edge e. If £ = @, then r will be one of the vertices of f/. A point
2 € e is an element of the interval of optimality for (r,£) with respect to (e, f) if there exists a shortest
locally f-free path to z whose root is r and whose last edge sequence is £.

If r is a vertex, then the angular extent of I is the interval [§,,0;] of angles, ¢, about r such that if
a refraction path is traced from r starting at angle ¢, then a point of I will be crossed by the path. ¢ is
measured as the counterclockwise angle from the positive z-axis; to insure that [f,,0,) is an interval, we
require that 0, € [0,27) and that 8, € (0a,0a + 2r). The fact that the angular extent is well-defined and is
indeed an interval follows from Claim 3 of Section 3.

If r € int(e,) is a critical root of I, then the “angular extent” of I will be defined to be the interval
[7y1, 7] of real numbers that corresponds to the range of shared segments, from the minimal segment T/ to
the maximal segment 7, where 7 = |rr”/| and 7 = |rr'|. As T € [y, 7] varies from 7» to 7, the path
rooted at r varies from having shared segment 777 (and passing through one endpoint of I) to having shared
segment 777 (and passing through the other endpoint of I). See Figure 4.3. Each point in [ is in one-to-one
correspondence with a point in [ryu,7w]. The path corresponding to 7 € [rpn, 7] is the one that is rooted
at r (which is a critical point of entry), travels along edge e, a distance 7, then gets off of edge e, (at the
critical angle of exit) to continue through the edge sequence £ to a point in I. For simplicity of notation,
we will write the angular extent of I as [f4,0;] even in the case that r is non-vertex. The understanding is
that 8, (resp., 0) equals 7. or Tpr, depending on which endpoint of [r.«, 7,u] corresponds to a path through
a (resp., b). Note that no angle is varied to generate paths through I in this case; the angle of exit is always
the critical angle, and the only parameter varied is the critical point of exit from e.. Also note that the
direction in which the path leaves edge e, is uniquely specified by the last edge sequence £. That is, whether
the path is critically reflected at e, or whether it hitched a ride on e, before crossing it is determined by the
first edge in £.
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Figure 4.3. The “angular extent” of a critical root.

Lemma 4.4 Intervals of optimality with respect to an edge-face pair (e, f) form a covering of e and have
mutually disjoint interiors.

Proof:  First note that every point z € e must lie in some interval of optimality with respect to (e, f): if
ps(z) is any shortest locally f-free path to 2, then we can determine the root, r, and the last edge sequence,
&, of ps(z), and z will lie in the interval of optimality for r and & with respect to (e, f). Now, for a point
z € e to be in the intervals of optimality for (r,&) and for (r’,&’) with respect to (e, f), it must satisfy
the equation d(r) + d. ¢(z) = d(r') + dyr £/(x). We claim that there can be at most one such “tie point”
z satisfying this equation. If there were two points, z and z’, then we would get a crossing of the shortest
locally f-free path to z (through one of the edge sequences) with the shortest locally f-free path to z’
(through the other edge sequence). Thus, there can be no open subinterval of e all of whose points lie in two
or more intervals of optimality. This implies that the intervals must have disjoint interiors. 1

The point, ¢, in I that is closest to r is called the frontier point of the interval. The fact that such a
point exists and is unique for the case of positive weights along the path comes from the following lemma.

Lemma 4.5 Ifr is a vertex that is the root of an edge sequence & and I C e = f N f' is an interval of
optimality with root r and last edge sequence £, then there exists a point ¢ in I that is closest to r among
paths that go from r to I through €. Further, c is either an endpoint of I or is such that the refraction path
from r to ¢ through £ hits ¢ at an angle of incidence of zero. If th ...ortest locally f-free paths to points of
I do not go through zero-cost regions, then the point ¢ i=

Proof: The fact that there exists a closest point folic+ - . .;:: the continuity of the length function and
the closed and boundedness of I. To show uniqueness in iie case of positive weights, note that the angles
of incidence at points of I form an interval (from Claim 3 of Section 3). The point of I that has an angle of
incidence closest in absolute value to 0 will be the frontier point of I; otherwise, a strictly shorter path to
I could be found by sliding ¢ along e by a slight amount, keeping all other crossing points the same along
& (strictness requires that a.,ap > 0). But for any closed interval of real numbers, there exists a unique
number that is closest to 0. Hence, ¢ is unique and ¢ will either be an endpoint of I or will be an interior
point if there exists an interior point with a zero angle of incidence. 1

To see that there are cases in which the fronti:- point is not unique, consider what happens when
ap = 0. Then, all points of e are at equal distance frcrn s (along paths with last edge sequence £ and root
r), since we are able to travel through f’ at zero cost. In this case, then, the entire edge will serve as a
frontier. We will say a little more about this case in the next section when we discuss how the algorithm
handles the case of zero-cost regions.
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For any interval I we can compute the frontier point ¢ by calling the function Frontier (I) as follows:

Function Frontier (I)

(0). Assume that £ = (ey, ..., ex) is the last edge sequence of I (the case in which £ = § can be handled
trivially). Assume that I = [a,b] is an interval with respect to (e, f) with root r. If r is a vertex, go to
(2); otherwise, go to (1).

(1). (r is a critical root) Compute the distances from r € int(r.) to a and to b. (This can be calculated
easily since the paths from r to a and b are uniquely determined by the fact that they leave edge e, at
the critical angle.) Let ¢ be the closer of the two points a and b, compute the length A of the path from
r to ¢, and let u (resp., B) be the first (resp., last) bend point on the path from r to c. Return the list

(e, M u,B).

(2). (r is a vertex) Trace backwards from edge e through the edge sequence &, starting with an angle of
incidence of 0 at e. At each iteration, compute the angle of incidence at edge e;_1, using the known
interior angles of the face and the known angle of incidence at edge e;. This eventually gives us the
angle, ¢, at which a ray must leave point r so that it will refract along £ and ultimately hit edge e
perpendicularly. Now do ray tracing from r starting at angle ¢. If the resulting refraction path stays
within the sequence £ and it hits e inside of the subsegment [a,b], then let ¢ be the hit point on e.
Otherwise, let ¢ be the endpoint of I that is closer to point r. Compute the length X of the path fromr
to ¢, and let u (resp., 3) be the first (resp., last) bend point along the path. Return the list (c, A u, B).

The intersection of the f-free path to ¢ with the face f’ (which shares edge e with face f) is a line
segment, (¢, on face f/. We call point 3 the access point of interval I. We note that the point # computed
by the function above will be the access point of interval I. If we draw the line segments fc for every interval
of optimality with respect to (e, f), then we get a partitioning of face f’ into access channels (since no two
such segments can intersect). Note that an access channel is either a triangle, a quadrilateral, or a pentagon.
We will refer to an access channel by giving a pair, (I1, I2), where I; and I> are the intervals of optimality
that give rise to the bordering segments, Bicy and Bacq. If I} = NIL, the channel is simply that part of Fid
to the left of Bacy; and if I, = NIL, the channel is that to the right of Brcy.

5. The Algorithm

As with the discrete geodesic algorithm of [MMP], our algorithm for the weighted region problem employs
the “continuous Dijkstra” technique. The basic idea behind this methodology is to simulate the effect of a
“wavefront” that propagates from the source point s. (The wavefront at distance d is the set of points such
that the length of the shortest path from s to these points is d.) As d increases, the wavefront sweeps over
points in the plane. At certain special values of d the wavefront collides with vertices or edges. We refer
to these collisions as “events”. Continuous Dijkstra simulates the continuous motion of the wavefront by
keeping track only of the critical changes that occur at events. The technique closely resembles the discrete
algorithm that Dijkstra [Di] suggested to find shortest paths in a graph by visiting the nodes in the order
of increasing distance from the source. In the DGP, [MMP)] applied the continuous Dijkstra technique and
showed that the number of events is O(n2) in the worst case. For the application to the weighted region
problem, we will give a version of a continuous Dijkstra algorithm in which the number of events is O(n*).

The algorithm uses a few simple data structures. We keep a list, ILIST, of candidate intervals of
optimality. A candidate interval (or “interval”, for short) is a subsegment of an edge that is a supersegment
of some (possibly empty) interval of optimality. A candidate interval, I, has the following information
associated with it: its extent, [a,b]; its first bend points, (u4, up) (Which are the first points where the paths
from r to a and b “bend”; these are precisely the points that define the angular extent, [04, 03], of the interval
(even when r is critical)); the last bend points, (wa,ws) (which are the points where the paths to a and b
cross the last edge in the last edge sequence; these points give us the angles of incidence of paths at a and
b, o and ¢); its edge-face pair, (e, f); its root, r (along with a pointer to the edge containing r, should r
be a critical point of entry); its depth, d = d(r); its frontier point, c; its access point, 3; and its predecessor,
T (which is the candidate interval (or vertex) whose “propagation” originally gave rise to [ }. We then will
write I = ([a,b], (ua,us), (wa, ws), (&, f), 7, d, ¢, B, 1).
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An edge-face pair, (e, f), has associated with it a sorted list of candidate intervals with respect to (e, /),
with the intervals in the order that they appear along the edge (following the edge in the direction that keeps
the face f on the left).

Each vertex v has associated with it a pointer to each candidate interval of which it is a root. Addition-
ally, there is a distance label, d(v), which indicates the length of the best-known path to vertex v. Initially,
d(v) = +oo for every vertex v. At some stage of the algorithm, each vertex (and certain critical points of
entry) will become “permanently labeled”, meaning that the value d(v) correctly represents the length of
an optimal path from s to v. Before such time as a label becomes permanent, we will refer to it as being
“temporarily labeled”. (The hope is that our terminology parallels that of Dijkstra’s algorithm.)

To be able to handle zero-cost regions, we define the following notation. First, we build a graph in
which each zero-weight edge and each zero-weight face is associated with a node (either an e-node or an
£node, respectively). Two f-nodes are adjacent if the corresponding faces either share an edge whose weight
is finite or share a vertex that is not blocked between the faces (so that a point in the interior of one face
can get to a point in the interior of the other face along a zero-cost path). Two enodes are adjacent if
the corresponding edges share a vertex that is not blocked between the edges. An e-node is adjacent to
an f-node if the corresponding edge is an edge of the corresponding face, or if the edge and face share a
vertex that is not blocked between the edge and face. Each connected component of this graph is called a
free region, denoted by Z, and we establish pointers from each zero-weight face and each zero-weight edge
to its corresponding free region. The interpretation is that all of the faces and edges within a free region
“communicate” | in that zero-cost paths exist between all points of all of these faces and edges.

® : Blocking vertex

Figure 5.1. Free regions.

Distinct free regions can touch at vertices that are blocking or can share infinite-weight edges, but are
otherwise disjoint. See Figure 5.1 for an example of a set of free regions. (Note that a free region is a
“generalized polygon”, in the sense defined in [RS].) The boundary of a free region is made up of a set of
edges. Each edge on the boundary has one or both of its adjacent faces outside the free region. We say
that an edge-face nair (e, f) is on the boundary of a free region Z if e is on the boundary of Z and f is not
contained in Z. Ve preprocess the free regions so that boundary information (the vertices and the edge-face
pairs that form the boundary) is stored with Z. Also, each free region Z has a distance label, d(Z), (initially
+00) which indicates its distance from the source. Only one label is needed for all points of Z, since they
are are all within zero distance of each other.

The algorithm also maintains a priority queue (called the event queue) whose entries are points of some
candidate interval (either an endpoint or the frontier point), with labels that are the best-known distances
back to the source.

The algorithm proceeds, at least in basic structure, just as it did for the discrete geodesic problem of
[MMP]: we select the next event from the priority queue, propagate the wavefront through the corresponding
interval by projecting the interval through the appropriate face, and then update the list of candidate intervals
after performing a “trimming” step. The major differences are in the function Project (due to the new local
optimality criterion) and in the way critical angles are handled (which results in the new procedure Insert-
Critical-Root). We also need the special procedure Propagate-Through-Free-Region to handle the case of a
“wavefront” encountering a free region.
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When we propagate an interval through a face f, we need to determine the lengths of locally optimal
paths that go through the interval and strike the boundary of f opposite to the interval. In the unweighted
problem [MMP], we handled this case by keeping associated with an interval the “unfolded image” of its
root. Then, in constant time, we can find the length of the locally optimal path to any point z € f (that
is reachable through the interval) by drawing the segment from the unfolded root to z. In contrast, for the
weighted region problem we know of no method to do these distance calculations except that of ray tracing
from the root through the last edge sequence. (Each such ray tracing will take time proportional to the
length of the edge sequence.) In order to find the refraction path that hits a particular point, we can do ray
tracings to search for the point (using binary search), or we can run a simple numerical routine. For this

purpose, we have the special functions Find-Point and Find-Tie-Point, which will be described in Section 8.
We now begin the formal specification of each of the major procedures and functions.

Main Algorithm

(0). (Initialize) Assign d(s) =0 (s is now “permanently labeled”). Create a degenerate candidate interval
corresponding to the source: I, = ([s, 3], (5,9), (s,5), (NIL,NIL), s, 0, s, s, s), with s assigned as the
root, first bend points, last bend points, access point, predecessor, and frontier point. (The edge-face
pair, (NIL, NIL), is left undefined for I,.) For each edge-face pair, initialize its interval list to be empty.
Initialize the event queue and ILIST to consist of the single element I,.

(1). (Main Loop) While there is an entry in the event queue, remove the one with the smallest distance
label and make its label permanent. If it is being labeled as the frontier point of some candidate interval,
I, then do Propagate(I).

v
Y2 f,
€,
O
e
O g

Figure 5.2. Propagation of an interval.

Procedure Propagate (I)

(0). Assume that I is an interval with respect to (e, f), wheree = f N f'. Let c € e be the frontier point of
I. Lete; = f N f1 and ez = f N fy be the edges of f opposite edge e. Refer to Figure 5.2.
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(1). (Check for special cases) If a, = 0 or if ay = 0 and a. < 400, then let Z be the free region
containing e (or f), do Propagate-Through-Free-Region (¢, Z), and stop. If a, = 400 or if ay = +00,
then stop (no propagation is possible across face f or edge e). Otherwise, go to (2) or (3), depending
on whether or not ¢ is a vertex.

(2). (cis not a vertex) Let I; = Project (I,e;) and, if I; # NIL, do Insert-Interval (I;,c), for i = 1,2.

(3). (cis a vertex) For each finite-weight face fo (# f', f) containing ¢ such that c is not blocked between
f' and fo, create candidate intervals I; (for i = 1,2,3) on the three edges (ey,es, and e3) of fo, where
the extent of interval I; is the entire edge e; and the root (and predecessor) of I; is ¢. Do Insert-Interval
(Ii,c) for each i =1,2,3.

Step (1) above checks to see if the the interval propagates into a free region, and, if so, it calls the
procedure Propagate-Through-Free-Region. We also check for the case in which passage is blocked for paths
going through interval I from face f' into face f. Basically, propagation stops if we hit an obstacle (either
an infinite-cost edge or infinite-cost face).

Note that the first time Propagate is called, it will be applied to the degenerate interval I,, whose
edge-face pair is undefined; in this case, we go directly to step (3), where we propagate out from the vertex
s.

Special treatment is necessary when we encounter a free region, for the wavefront can instantaneously
traverse the region to all of its boundary. The result is that we turn the entire free region into one big
“source”, out of which wavefronts propagate in every direction.

Procedure Propagate-Through-Free-Region (¢, Z)
(0). Ifd(c) > d(Z), then stop; otherwise, label £ with d(Z) = d(c), and continue to (1).

(1). (Propagate through boundary edges) For every edge-face pair (e, f), on the boundary of Z such
that o, # +00, create a candidate interval, I, of the following special form. The extent of I is the entire
edge. The angles of refraction of all paths eminating from the interval are zero, since paths must leave
perpendicular to the edge. The root of I is considered to be Z, and the depth is d(Z). Any point in
I can serve as the frontier point for the interval (since all points can be reached in the same distance
from c). The access point is considered to be NIL, and the predecessor is just Z. Add each of these
candidate intervals to the ILIST. Now call Propagate (I) for each such interval.

(2). (Propagate through boundary vertices) For every vertex, v, on the boundary of Z, permanently
label v with d{v) = d(¢) = d(Z). For each finite-weight face fo ¢ Z containing v such that v is not
blocked between fo, and a face of Z, create candidate intervals I; (for i = 1,2,3) on the three edges
(e1,e2, and eg) of fo, where the extent of interval I; is the entire edge e; and the root (and predecessor)
of I; is v. Do Insert-Interval (I;,v) for each i = 1,2, 3.

In step (1) above we have instantiated a type of candidate interval that does not technically fit within
the framework of the definition given earlier. We could modify our definition to include this special case;
instead, for simplicity, we omit the details here and note that all operations that we require are easily done
on these candidate intervals. In particular, it is easy to project them, propagate them, and to find how to
hit a vertex or critical point from them. (Hitting a vertex is accomplished by simply using the requirement
that the angle of refraction out of the free region must be zero.) We immediately propagate each of the
newly created intervals since the distance to the frontier point of each interval is the same as d(¢); motion is
free from ¢ to the boundary of Z.

The next function, Project (I,e1), finds the subset of e; that is hit by paths through I. We apply the
local optimality criterion (Snell’s Law) to determine how the “wedge of light” is extended through the next
face. The function returns a candidate interval on e; whose points are accessible through I. If no part of e;
is accessible, we return NIL.
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Function Project (I,e1)

(0). Assume I = [a, b] is an interval with respect to (e, f). Let v € f be the vertex opposite e and let (uq, up)
(resp., (wa,ws)) be the first (resp., last) bend points of I. We assume that e; is one of the two edges
containing v. Refer to Figure 5.2.

(1). (Check for blockage) If a. = +oo or if ay = +00, then stop and return NIL (no propagation is
possible across face f or edge e).

(2). (Projecting) Consider the “cone of light rays” obtained by doing ray-tracing from r through points in
I, using initial directions determined by [ua,us]. (If T € int(e,) is a critical root, then we get instead a
“belt” of light rays, as in Figure 4.3, that use points of [us, us] as critical points of exit from e,. Since
all the paths exit e, at the same angle, and they pass through the same last edge sequence, they are
all incident on edge e at the same angle, ¢4 = éy.) Let A = [aa,ba] be the subsegment of e, that lies
within this cone and let [uq ,,us,] be the corresponding range of first bend points. We can determine
points a4 and by as follows. First extend the paths through a and b until they exit face f. Do this by
applying Snell’s Law at the edge e, using the angles of incidence, ¢, and ¢y (determined by the points
w, and wy), at e and extending the resulting rays of refraction through face f, leaving through points y,
and yy. (If a (resp., b) is a vertex, then ys = a (resp., y» = b).) If ys € €1, then set aq = Ya, Uay = Ua,
and w,, = a; otherwise, A = @, and we return NIL. If yy € e1, then set ba =y, Up, = wp, and wp,, = b;
otherwise, set by = v and let (A, ay,b;, w) = Find-Point (I,v). Set uy, = by and wy, = w.

(3). (Trimming) Calculate the angles of incidence, ¢a, and ¢s,, at a4 and by. Let 0, = 0.(f,e1) be the
critical angle at edge e; coming from face f. Note that ¢a, < ¢, by Claim 3 of Section 3 if r Is a
vertex, and @a, = ¢», if v is a critical root. There are now three cases to consider.

(). ([far,®b.] C [~0:,0c]) Return the candidate interval I4 = [aa,ba] that has root r, edge-face
pair (e1, f1), first bend points (tay, sy ), last bend points (wa,,ws, ), predecessor I, and a
frontier point and an access point that are easily calculated by calling Frontier (I4). All of the
angles of incidence to this interval are less (in absolute value) than the critical angle.

(). ([fan> 5] N [=0c,0:] = 0) Return NIL.

(iii). (Otherwise; [¢a,, db,] N [—0c,0c] # @) If 6. € [#an, B ,), then let (ba,us,,ws,) = Find-Hit-
At-Angle (6.,1), and mark ba as a critical point of entry (we have trimmed [aa,ba] on the
right). If —0. € [fa,,$b4), then let (aa,Uas;Was) = Find-Hit-At-Angle (—0.,I), and mark
as as a critical point of entry (we have trimmed [a4,ba] on the left). Return the candidate
interval I4 = [a4,ba] that has root r, edge-face pair (e1, f1), first bend points (ug,,us,), last
bend points (w, , , ws , ), predecessor I, and a frontier point and an access point that are easily
calculated by calling Frontier (I4).

Step (2) above makes a call to Find-Point (I,v), which is not formally defined until Section 8. All we
need to know at this point is that the function returns a list (X, a1, b1, w), where X is the length (actually,
an approximate length) of the path from the root r through I that strikes v, and w is the last bend point
on this path. The points a; and b; lie on the first edge in the last edge sequence & (corresponding to I),
and they define an interval in which the first bend point of the desired path must lie. As we will see in
Section 8, Find-Point is a binary search procedure that results in a small interval [a;, b1] that traps the “true”
value of the first bend point on the exact refraction path to v. In step (2) above, we would like to assign
up, to be the first bend point on the exact refraction path to v, but, instead, we have assigned us, = b1,
leading to a slight overestimate of the interval [ug,,us ,] of first bend points that correspond to the interval
of optimality [a4,ba].

Step (3) above needs to compute angles of incidence at a4 and ba. If a4 or ba is a vertex, then we must
be careful how we define the angle of incidence at the edge e;. We essentially take the limit of the angle
of incidence as the path gets closer and closer to the vertex from within f. This can be calculated exactly
by finding the angle of incidence to a line that is parallel to e; but slightly outside f for a path that passes
through the vertex.

The next procedure figures out how to place a new candidate interval I among the existing intervals
on edge-face pair (e, f). It checks for dominance by and of other intervals, and performs the necessary
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“trimming”. When done, it creates an instance of the interval in the ILIST, and inserts the appropriate
elements in the event queue.

Procedure Insert-Interval (I,%)

(0).

(1).

(2)-

(3).

(4).

(5)-

Assume I = [a,b] is an interval with respect to (e, f) and that it has root r, frontier point c, last bend
point 3, and depth d. Point € is the frontier point of T, the predecessor of I.

(Locate point € in access channel) Locate point T in an access channel, say (I, 1), of (e, f). The
wavefront can only get to I through this channel. Let I; = [a;, b;] (provided that I; # NIL), fori = 1,2.
Let r; be the root, ¢; be the frontier point, 5; be the last bend point, and d; be the depth of I;.

(Delete dominated candidate intervals) If Iy # NIL and a; € I, then let (A1,a’, b, w") = Find-
Point (7,a;). If d(r) + A1 is less than the current label on point a; (meaning that a; is better reached
through r than through its current root), then do Delete (1), set I, to be the predecessor of I, in the
interval list of e; (set I to NIL if no predecessor exists), and return to step (2). Similarly, if I, # NIL
and by € I, then check for dominance and, if necessary, delete I, and return to step (2).

IfI, ;é NIL, ay lies to the right of I, and Bec intersects f1c,, then compute the point of intersection
v = BecN Bic; and compare the distance to v via r (through 1) with the distance to v via r1 and the
last edge sequence of Iy. If 7 is reached via r before it is reached via r1, then do Delete (I3 ), set I; to
be the predecessor of I, in the interval list of e, (set I to NIL if no predecessor exists), and return to
step (2). If v is reached first from ry, then stop. (There is no need to insert I, since it is dominated.)
Similarly, check for dominance in the case that Iy # NIL, by lies to the left of I, and B¢ intersects Baca.

(Trim at tie points) IfI; # NIL and by € I, then let (a, As, uy , Us,, Ua, Uy, W, , Wa) = Find-Tie-Point
(I1,I). Then a will be the point in I N I; that can be reached equally well through I and through I;.
(We are guaranteed that such a “tie point” exists by the continuity of lengths of locally f-free paths.)
Remove by from the event queue, set by = a, and update ¢, if necessary. If I # NIL and a3 € I,
let (b, Ay, uh, Up, Uay, Uy, , W, Wa,) = Find-Tie-Point (I,13). Then b will be the point in I N I that can
be reached equally well through I and through I;. Remove ay from the event queue, set a3 = b, and
update cy if necessary. We now have an interval [a, b], which is a trimmed version of the original mterva]
that was to be inserted. We have also appropriately trimmed the neighboring intervals I, and I, and
updated their first and last bend points. If a # b, go to (4); otherwise, stop (no interval needs to be
inserted).

(Insert necessary critical roots) If a (resp., b) is marked as a critical point of entry to edge e (which
would have been done in step (3) of Project), then do Insert-Critical-Root (a,I) (resp., Insert-Critical-
Root (b,1)).

(Final updates) Let (cr, A, u,8) = Frontier (I), so that c; is the frontier point of I = [a,b] with
respect to r and last edge sequence £, and § is the access point of I. Push the interval I = ([a,b],
(ua,up), (wa,ws), (e, f), r, d, c1, B, T) onto the list ILIST and insert it into the interval list of edge e
(between intervals I; and I,). Put the points a, b, and c; (if c; # a,b) into the event queue, with labels
d+ X, d+ Xy, and d + X, respectively.

Note that step (2) above may be performed many times, as we discover several neighboring intervals

that are dominated by the new candidate. At the conclusion of step (2), I; and Iy represent the intervals
that will neighbor I on the left and right.

Step (3) calls the function Find-Tie-Point in order to find the “tie points” that will be the new boundaries

between I and its neighbors. Find-Tie-Point (I, I3) determines the tie point, x € I; N I3, by doing binary
search in the range of values of (g4, ,us, ) X (Ua,, us,) (doing ray tracing at each evaluation). It returns a list
(z, A, u1, uf, uz, uh, wi, ws), where z is the required tie point, A is the distance from s to the point z, [u;, u]
is the (small) range of first bend points of paths through I to z, [us, u5] is the (small) range of first bend
points of paths through I, to z, and w; and wy are the corresponding last bend points for paths through
I, and I, respectively. Its implementation is similar to that of Find-Point, and will be described more in
Section 8.
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The procedure Delete (I) simply deletes I from the ILIST, deletes I from the interval list of the corre-
sponding edge-face pair, and deletes any entries of points of I in the event queue.

The procedure Insert-Critical-Root (re,I) establishes the point r. E I Ceasa critical entry point to
edge e. From the point r, paths can follow the edge e for a while and then possibly get off (at the critical
angle) into the faces on one or both sides of e. This means that we must instantiate new candidate intervals
on the edges opposite e.

Procedure Insert-Critical-Root (rc, I )

(0). If ae = +o0, then stop. (There is no need to use e critically.) Assume that I is an interval with respect
to (e, f). We assume that r. € int(e). Let f' be the face sharing edge e with face f. Let e, and ez be
the edges opposite e on face f, and let e and e} be the edges opposite e on face f’. Refer to Figure 5.3.

Figure 5.3. Result of inserting a root at a critical point of entry.

(1). (Label v) If v is not in the event queue, then insert it with label d(r.) + a.|r.v|; otherwise, update the
label on v by setting it to the minimum of its current label and d(r.) + a.|rcv|.

(2). (Instantiate new intervals) If a. < ay, then the critical angle 0.(f,e) is well defined, and we proceed
as follows. Draw a ray from r. through f that leaves at the critical angle 6.(f,¢), and let y be the point
of intersection with e, or es. If y € e1, then instantiate a candidate interval of optimality on €1 with
extent [y,v]. Otherwise, y € ez, and we instantiate two candidate intervals, one on e; with the entire
edge [v1,v] as its extent, and one on e with extent [y, v1]. Similarly, if ae < g, then the critical angle
9.(f',e) is well defined, and we proceed as above, instantiating intervals on one or both of the edges €}
and ef,. Compute the necessary quantities, such as frontier points and first bend points. The intervals

will all have r. as both their root and predecessor. We add to ILIST each interval that we create and

update the event queue accordingly.

The function Find-Hit-At-Angle (8, I) determines the point in [ (if there is one) such that the refraction
path from the root of I through the last edge sequence will hit the point at the angle of incidence 6. If the
function succeeds in finding the desired path, it returns a list (z,u, w) of the point hit (x), the corresponding
first bend point (u), and the corresponding last bend point (w); otherwise, it returns NIL.
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Function Find-Hit-At-Angle (6,1)
(0). Assume I is an interval with respect to (e, f) and has root r.

(1). (Trace angles back) Starting with angle of incidence § at edge e, determine the angles of incidence
at each edge in the last edge sequence. This can be done by following back pointers to predecessors of
intervals and using the fact that the angle of incidence at e; uniquely specifies the angle of refraction
from e;_q, which in turn uniquely specifies the angle of incidence at e;—y. It may be impossible at
some stage to achieve the desired angle of refract: ::.due to the constraint that the angle of incidence be
less (in absolute value) than the critical angle; ::: vhis case, we stop and return NIL. This process will
eventually give the angle ¢ such that a refraction path that starts from r at angle ¢ will refract through
the last edge sequence and strike e at angle of incidence 6.

(2). (Ray trace forward) Now do ray tracing from r at angle ¢, following the last edge sequence. If
the refraction path leaves the sequence, then stop and return NIL. Otherwise, the refraction path will
eventually cross edge e at some point z (and we know by construction that it will strike x at the desired
angle of incidence 0). Let u be the first bend point and let w be the last bend point in the path from r
to z. If z € I, then return the list (z,u,w); otherwise, return NIL.

6. Correctness Proof

We begin now a proof that the algorithm works. The proof largely follows the similar proof from [MMP],
but we will point out the places where it differs. Our first objective is to prove the following proposition:

Proposition 6.1  After each iteration of the Main Loop of the Algorithm, the current list of candidate
intervals (ILIST) correctly gives the best locally f-free path so far from s to points of these intervals, where
“best so far” has the following meaning: If x € e = f N f' lies in interval I for (v, &) with respect to (e, f),
then a locally f-free path to x that has root r, last edge sequence £, and length d(r) + d, £(z) is optimal
among those locally f-free paths to « that enter face f' through an interval whose frontier point has already
been an event point (i.e., through an interval that has already been propagated).

Proof: The proof proceeds by induction on the iteration count in the Main Loop. At the first iteration,
the claim is true because the only candidate interval is the trivial one at the source s. Assume now that
the claim holds for the first k iterations (this is the Induction Hypothesis). The inductive step requires us
to prove that if, at iteration k + 1, we introduce interval I for root r with respect to (e, f) or we modify
an existing such interval, then the best locally f-free path so far to points of I is through root » and the
corresponding last edge sequence. This will be shown in the following two lemmas. %

We now give two lemmas to complete the proof of Proposition 6.1. Assume now that the Induction
Hypothesis holds (i.e., that the claim of Proposition 6.1 holds for the first £ iterations).

A candidate interval will have one of two fates: Either its frontier point gets permanently labeled (by
its becoming the top element in the priority queue), thereby assuring that some part of it will “survive” and
become part of a final interval of optimality with the same attributes as the candidate; or, the candidate
interval gets deleted in step (2) of Insert-Interval, in which case we can guarantee that the interval of
optimality corresponding to the candidate will be empty.

Lemma 6.2 If we delete interval I; in step (2) of procedure Insert-Interval, then the interval of optimality
for (ry,&1) with respect to (e, f) has an empty interior. A similar statement holds if we delete interval I.

Proof: We consider the case in which step (2) deletes I;. A similar argument holds for the case of deleting
L.

Assume that a; € I = [a,b] and di + dr, £,(a1) > d+ dr g(a1). Then, the best locally f-free path so
far to point a; is through root r and last edge sequence £. Let w be the intersection of the refraction path
from r through &£ to a; with edge €’. Since a; € I, we know that w € I, by the method used to construct I
from its predecessor, 1. Let us assume that there exists a point y in the interior of the candidate interval for
(r1,&1) with respect to (e, f) (so the path p(y) has root ry and last edge sequence £;). We will then arrive
at a contradiction.
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First, note that y is interior to [a1, b] (otherwise, y is either inaccessible from ri or can be reached from
some other root of (e, f) along a shorter locally f-free path). Next, note that interval I; was established
when its predecessor, I;, was propagated. Since point € € T was located in channel (I, I2), we know that
T lies to the right of the segment Bicy, and therefore to the right of the refraction path from ri to by
(otherwise, T € 1,). Since T is connected, then, all points of T lie to the right of the refraction path from
1 to z for any z € [a1, b1], and lie strictly to the right of the refraction path from r; to z for z interior to
[a1,b1]. In particular, w lies strictly to the right of segment W17, the last segment in the refraction path
from 7y through £; to y. But, a1 lies strictly to the left of segment Wiy, so segments Way and Wiy must
intersect in some point v that is interior to both segments (see Figure 5.3). Since ¥ lies on the path ps(y),
the subpath of ps(y) from r to v is no longer than the subpath of ps(a1) from r to y. But this means
that we can get a strict improvement to the path to a; by going through root 7, (and &) to ay (since
dr, £,(7) + apilyasl > dpy g (w1) + ag|lwia]). This contadicts our assumption that a; is reached better
through r than through r;. Thus, no such y interior to the candidate interval for (ri, &) with respect to
(e, f) can exist, and we were justified in deleting this candidate interval. §

Figure 6.1. Illustration of proof of Lemma 6.2.

Next, we must prove that the interval that is inserted by procedure Insert-Interval is “correct” in the
following sense:

Lemma 6.3 When procedure Insert-Interval inserts an interval I between intervals I and I, then the
resulting interval list of edge e correctly subdivides points of e according to the best locally f-free paths so
far.

Proof: The proof remains largely the same as that of Lemma 6.3 from [MMP]. One change is that we
must check that the trimming is done properly. We now have the added complication of trimming according
to the constraints imposed by the critical angles (that an angle of incidence cannot exceed in absolute value
the relevant critical angle). This trimming is done in steps (3).(i)-(iii) of the function Project, before the
candidate interval is ever passed to Insert-Interval. In the event that trimming was done at the critical angle,
and the corresponding critical point of entry survives the trimming at tie points (step (3) of Insert-Interval),
we must call for an insertion of the critical point as a root in step (4) of Insert-Interval.

Another change is that measurements of lengths (from a given root through a given edge sequence) to
points, such as a; in step (2) or tie points in step (3), and determinations of paths to these points (including
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information like the first and last bend points) must be done by the functions Find-Point and Find-Tie-Point.
As we discuss in Section 8, there are numerical issues involved with these functions that require that the
numbers they return are precise only to a given tolerance.

The remainder of the proof follows closely that of Lemma 6.3 of [MMP], so we omit them here. 1

This completes the proof of Proposition 6.1.

One can show that during an execution of Dijkstra’s algorithm, when a node is “permanently labeled”
(i.e., put on the “CLOSED?” list), it is labeled with the length of the shortest path from the source to the
node. Analogously, we have:

Lemma 6.4 When a point interior to an edge is “permanently labeled” as part of a candidate interval with
respect to (e, f), it is labeled with the shortest locally f-free path length to it. When a vertex is permanently
labeled, it is labeled with the shortest path length to it.

Proof: The proof is very similar to that of Lemma 6.4 of [MMP], so we omit it here. 1

In our continuous Dijkstra framework, we think of a “wavefront” moving out from s and imagine that,
as the front encounters new edges or boundaries of candidate intervals, events occur. When an event occurs
at a certain distance from s, then all points closer to s than that distance have already encountered the
“wavefront”:

Lemma 6.5 If the algorithm has just assigned a permanent label of § to some point, then for any point z
on an edge e such that d(z) < 6, there is an interval I (for (r,£) with respect to (e, f)) in the current ILIST
that contains z such that an optimal path to = has root r, last edge sequence £, and length d(r) + dr £(z).

Proof:  Again, the proof essentially follows that of the similar lemma (Lemma 6.5) of [MMP]. 1
At the conclusion of our algorithm, the wavefront has encountered all points of S:
Lemma 6.6 At the conclusion of the algorithm, the interval list of (e, f) forms a covering of the edge e.

Proof: Assume that there is some point € e = f N f’ that is not covered by a candidate interval with
respect to (e, f). Let ps(z) be a shortest f-free path to z. Let I; = [a;,b] be the last candidate interval
intersected by py(x) (there must be at least one), and assume that I; is an interval with respect to (e, f1).
Since z is not covered, e; # e. Let y&’ = fiNpy(z). Then, point z’ lies on an edge eo = fiN fo. Let pys,(z') be
the subpath of ps(z) from s to z’. Clearly, ps,(z’) is a shortest fo-free path to a’. The interval I; must have
been propagated (otherwise, its frontier point would still be in the event queue, and the algorithm would not
have concluded). But then, by Lemma 6.3, there would have been a candidate interval created on edge €o
that includes point z’. This contradicts the fact that I; is the last candidate interval intersected by ps(z). 1

Proposition 6.7 The following are equivalent for a point z on edge e of face f:

(1) At the conclusion of the algorithm,  lies in the candidate interval for (r,£) with respect
to (e, f).

(2) There is a shortest locally f-free path p from s to & with root r and length d(r) + d,¢(z); that
is, z lies in the interval of optimality for (r,£) with respect to (e, f).

Proof: The proof follows immediately from Proposition 6.1 and Lemma 6.6.

7. Complexity Analysis

We will write th= complexity of our algorithm in terms of E, the number of events (candidate intervals of
optimality). V.- turn now to the issue of proving a polynomial worst-case upper bound on E. It would be
nice if we could prove that E is bounded by O(n?), as was the case in the DGP, but this is not true. An
example is given in Figure 7.1 of a case in which there are Q(n®) intervals of optimality. We originally thought
([Mi1,MP]) we had a proof that O(n®) is also an upper bound on the number of intervals of optimality, but,
as shown in Figure 7.2, one can use the gadget of Figure 7.1 together with a gadget like Figure 3.1 to get
a lower bound example in which there are 2(n*) intervals of optimality. In this section we will prove that
the total number of intervals of optimality is at most O(n*) (which, by the example of Figure 7.2, is a tight
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L = vary large s
2 = very small

Figure 7.1. There may be Q(n?) intervals of optimality.

O(n?) paths

Construction of
Figure 7.1

:

s

Figure 7.2. There may be Q(n*) intervals of optimality.

bound in the worst case), which also implies that the maximum number of candidate intervals (and hence
events) is O(n*).

The lower bound of Figures 7.1-7.2 is based on the fact that there can be a quadratic number of critical
roots. This implies that the argument given in [MMP] that vertices will be “trapped” in between pairs of
representative paths to intervals of optimality must be modified for a couple of reasons. First, paths can
be critically reflected and can critically use an edge, meaning that two paths to distinct adjacent intervals
may not trap a vertex (as is the case for the example in Figure 7.1). Also, because shortest locally f-free
paths are allowed to cross (although, by Lemma 4.2 they can do so only in a limited fashion), we are not
able to proceed as in [MMP] by drawing a set of locally f-free paths to an edge (with one path per interval)
and looking at the imposed planar subdivision. Since two paths may cross, the region “between” them is
undefined.

A further complication in our case is that a shortest locally f-free path may cross an edge many times,
implying that the length of an edge sequence crossed by a path may be very long (since there can be many
occurences of each edge). Our first lemma shows a linear bound on the number of times any one edge can be
crossed by a subpath, p, of a shortest locally f-free path, where p has no vertices or critical points (meaning
that it crosses an edge sequence at crossing points internal to the edges of the sequence). Since it is possible
for an edge to be crossed a linear number of times by an optimal path (as in the example of Figure 7.2), our
bound is as tight as possible.

Lemma 7.1 Let P be a shortest locally F-free path. Let p be a subpath of p such that p goes through
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no vertices or critical points. Then, p can cross an edge e at most O(n) times. Thus, in particular, the last
edge sequence of J contains each edge O(n) times, implying a bound of O(n?) on its length.

Proof: Let e = fN f. Call a crossing point z; between p and e an “up-crossing” if p is directed from f’
to f when crossing at z;. We will show that there are at most O(n) up-crossing points. A similar argument
shows that there are only O(n) down-crossing points.

Let the up-crossings be labelled z1, ...,z along e from left to right when facing f. We group the points
into triples: (z1,z2,23), (24, 25,26),.... Clearly, if we can show a linear bound on the number of triples, we
are done.

Figure 7.3. Vertex v splits paths p;—1, pi, Pi+1-

We now describe a “charging” scheme to assign triples of up-crossings to vertices of the subdivision.
Consider a triple (z;-1,2i,z;+1). We place three “markers” at points z;_1,z;,*;41 and move the markers
along the subpaths of p that start at points x;_1, Z;, ;1. We advance the markers across edges in synchro-
nization, noting the first time that the three markers fail to cross the same edge (which must eventually
happen). When they fail to cross the same edge, there must be a vertex v; that “splits® the three subpaths
(two on one side of v;, and one on the other side of v;). Refer to Figure 7.3. (We have not attempted to
draw Figures 7.3-7.8 to be accurate with respect to obeying the local optimality conditions at points where
paths cross edges. The figures are meant only to give a qualitative understanding of the situation.)

Figure 7.4. Vertex v; is potentially charged many times.

We would like to charge the triple (#i—1, i, Zi+1) to the vertex v;, but we note that the vertex v; may
be charged by many triples, as in Figure 7.4. The problem is that during the advancement of the three
markers, we may have crossed e several times before being split by vertex v;. We must devise a method
of “off-loading” such charges to other vertices of the subdivision so that no vertex is charged more than a
constant number of times.
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First, if the three markers get split before they are ever advanced across e, then we can go ahead and
charge (2;-1,Zi, Ti+1) to the vertex v;. We say that v; is charged BLUE in this case. It is easy to see that
a vertex v; can be charged BLUE at most once.

If, on the other hand, the markers cross e one or more times before being split, then we must do
some more work. First, we need some more notation. Let pi—1,pi,Pi+1 be the subpaths of p that start at
Z;—1,&i, Tip1, Tespectively, and continue until the first splitting vertex v;. Notice that, since the paths p;—1,
pi, and piy; are disjoint subpaths of p, they have an ordering according to their positions as subpaths of p.
There are thus 3! = 6 cases associated with the triple (Zim1, i, Tit1), according to all possible orderings.

Refer to the triple of paths p;_1,pi,Pi+1 as a strip. It may be that this strip weaves itself back and
forth, around and around, across e many times. However, there is some limit to the amount of craziness,
since, after all, these paths must all be optimal (shortest locally F-free).

We refer to the subset of a strip that lies between two consecutive crossings of e as a substrip. For a
substrip o, the portion of path p; that lies along it will be denoted p;(o). Note that pi(c) naturally defines
a simple polygon, denoted P;(c), whose boundary consists of p;(¢) together with the subsegment of e that
joins the endpoints of p;(a). We say that path p;(o) is outside of path pi—1(c) along a substrip o if P_i{o)
is nested inside of Pi(o).

Fact 1  Assume that p;_; precedes p; in the ordering along p. Let o and o' be two adjacent substrips,
with o preceding o'. Then it is not possible for pi(o) to be outside of p;—1(c) and for pi—1(c’) to be outside
of pi(c’).

\
’
(]

Figure 7.5. Proof of Fact 1.

Proof:  Assume that it is possible to have the situation that p;(o) is outside of pi—1(0) and pi—1(d’) is
outside of p;(¢’). Refer to Figure 7.5. Along substrip o (resp., '), let a (resp., o) be the weight of the
cheapest region crossed by the substrip, and let ab (resp., a’b’) be a chord in the cheapest region that joins
path p;— to path p;. Let £;(0) (resp., £i—1(0")) be the weighted length of the path p;(¢) (resp., pi-1(c’)).
Note that a|ab| < £i(o) (resp., o [a'b| < £i_1(0”)), since the (unweighted) length of ab (resp., a’b’) is certainly
less than the (unweighted) length of pi(o) (resp., pi—1(0”)), and the weight « (resp., ') was chosen to be
the cheapest weight in the substrip o (resp., a').

This means that if we “shortcut” p by going from a to b, we “save” £;_1(0') > o |a’b| on the (weighted)
length of p, while if we “shortcut” p by going from a' to b, we “save” £;(c) > afab|. Thus, by taking the
better of the two shortcuts, we can improve the path p, a contradiction. 1

The above fact implies that a strip cannot weave “back and forth” many times across e, since this would
imply for some pair of subpaths that the earlier path (the one that occurs earlier in the ordering along p)
would go from being inside to being outside of the other subpath. (The reader can check each of the 6 cases
of the relative orderings of the three subpaths.) Thus, the only real worry we have is that of spirals, as in
Figure 7.4.
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We handle spirals by devising a method of charging them off to other vertices, as follows. Assume that
pi—1 precedes p; and p; precedes p;4; in the order along p; the other 5 cases are handled similarly. Then,
Fact 1 tells us that the only situation we have to worry about is that the subpaths may spiral clockwise,
crossing e many times, and then spiral counterclockwise, crossing e many times. (A switch from going
counterclockwise to clockwise would violate Fact 1.) A clockwise spiral means, more precisely, that there is
a sequence of substrips, o1,09,...,0m, such that p;—1(c;) is outside of p;(c;) for all j = 1,2,...,m.

Figure 7.6. Handling spirals.

We must charge each crossing of e by the strip to some vertex, so that the vertex v; that splits the strip
is not charged over and over. Let us charge RED that vertex u; obtained as follows. (Refer to Figure 7.6.)
Since p;—; and p; precede p;4; in their order along p, there must be subpaths of p that join the end of p;_;
to the beginning of p; (at point z;) and that join the end of p; to the beginning of pi+1 (at point z;41); call
these paths m;_; and =, respectively. By the simplicity of p (Lemma 4.2), we know that paths m;_; and m;
are “trapped” between two of the substrips of the spiral: that substrip originating at (z;-1, z;, zi+1), and
that substrip originating at (@ 1,2y, £;41), in the figure. Let y;_; and y; be the points of e where m;_;
and m; (respectively) cross the subsegment of e between z;4, and z;:—;. We place two markers on y;—; and
y; and advance them backwards (in reverse order along the paths) along 7;—; and =; until the first time that
they are “split” by some vertex u;. We charge u; with a RED charge. The following facts assure that we do
not charge a vertex RED more than once.

Fact 2 The vertex u; will be encountered before the advancement along ;.1 and 7; takes the two markers
across e.

Figure 7.7. Proof of Fact 2.
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Proof: If the claim is false, then we have the situation depicted in Figure 7.7. Let ab be a chord through
the cheapest region crossed by substrip o, joining path p;i(o1) to path p;_1(01)i Let @’F be a chord through
the cheapest region crossed by the substrip o} (defined by the pair of paths m; and m;_1, from points y; and
yi—1 to the next crossing of e tracing backwards), joining path m_1 to path m;. Then, using shortcut ab
saves the weighted length of 7; along substrip ¢} (which is greater than the weighted length of a’t’), while
using shortcut a’b’ saves the weighted length of p;(o1) (which is greater than the weighted length of ab).
Thus, by using the shorter of the two shortcuts, we can shorten the path p. 1

Fact 3  The vertex u; will be charged RED at most once.

Figure 7.8. Proof of Fact 3.

Proof:  Refer to Figure 7.8. If u; is charged also by the triple (z;-1, Zj,%;41), then the corresponding
return paths 7; and m;_1 (shown as bold dashed paths) must either be outside of the substrip defined by =;
and m;_; (as shown in the figure), or inside the substrip, or have one inside and one outside. In any case,
since we know that p is simple, we will discover that at least one of the pairs of upcrossing points (zi, Tig1)
or (2j,zj+1) are not consecutive, in violation of their definition. In the figure, we have shaded the simple
polygon defined by the segments %31, Ui¥i-1, the subpath of p from z; to y;—1, and the subpath of p from
Ziy1 o Y. 1

In conclusion, we have given a means of charging each triple (zi—1, %, Tiy1) to some vertex of the
subdivision, either as a BLUE (splitting) vertex or as a RED vertex, and each vertex of the subdivision is
charged BLUE (resp., RED) at most once. This implies that there are only O(n) triples, so we are done. I

We suspect that, by more strongly using metric properties of shortest locally f-free paths, one could
considerably simplify the proof of Lemma 7.1. We leave this as an open problem.

We define now the notion of a fork point between two paths, p, and py,, incident on points and y
interior to edge e. The fork point is defined as follows. We place “markers” at ¢ and y and march backwards
along the paths, advancing the markers through one face at a time on each path, and we stop when the
markers first fail to cross the interior of the same edge. There are three ways in which this can happen: (1).
the vertex root of one of the paths is encountered, (2). the paths get “split” by a vertex v (meaning that
they cross the interiors of two different edges adjacent to v), or (3). a critical point of exit of one of the
paths is encountered. In case (1) we define the fork point to be the root encountered. If the paths get split
by a vertex (case (2)), then the vertex, v, that separates them is the fork point separating pz and py, and
we say that v is a fork vertex. Otherwise, our backward march stopped because of a critical point of exit for
one of the paths, in which case we take the fork point to be the root corresponding to the critical point of
exit. (The notion of fork point was used in the charging scheme of the proof of Lemma 7.1, where we had
the additional information that there were no critical points or vertices along the paths.)

Our strategy for proving a bound of O(n*) on the number of events is to show that there can be at most
O(n?) intervals of optimality per edge-face pair (e, f). This is done by showing that there can be only O(n?)
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intervals of optimality on edge e = N(f, f) that correspond to first incidences of shortest locally f-free paths
on e. Then, we appeal to Lemma 7.1 to conclude that there can be only O(n3) intervals on e, since each of
the O(n) shortest locally f-free paths that encounter e can intersect e at most O(n) times.

Let (e, f) be an edge-face pair, where e = N(f’, f). Consider the set of all intervals of optimality with
respect to (e, f). Some of these intervals correspond to shortest locally f-free paths whose first encounter
with edge e is at the points of that interval (i.e., the edge e was not crossed by the paths to points of the
interval). Let z1,29,...,zx be points interior to each of these special intervals, in sorted order along e. Our
goal is to show that K = O(n). This is done in the next two lemmas.

Lemma 7.2  If the shortest locally f-free paths, ps(x;) and ps(2it+1), share a common root r, then there
must be a fork vertex v; separating them, and v; is not the fork vertex corresponding to any other pair
(ps(x;) and ps(zj41), j # ©) of shortest locally f-free paths that share a common root. (That is, v; # v; for
i#7.)

Proof: If there were no such fork vertex, then since the paths p;(z;) and ps(2;41) share the same root,
they must have the same last edge sequences. (By the definition of the root of a path, the subpaths from r
to z; and to z;41 do not pass through any vertices or critical points. Thus, they can traverse an edge only
by going through its interior at a crossing point. If we had defined the root to be the last vertex along the
path (regardless of critical points), then the claim would no longer be true, for there can be many paths with
the same last vertex while there is no fork vertex trapped between the paths (refer to Figure 7.1).) But if
ps(z;) and ps(z;41) have the same roots and the same last edges sequences, then z; and «;4, must belong
to the same interval of optimality, a contradiction.

pf( X i) ("trapped")

v

Figure 7.9. Uniqueness of fork vertex.

To show uniqueness, assume to the contrary that v is a fork vertex between ps(z;) and py(z;4+1) and
also between py(z;) and ps(xj4+1). Refer to Figure 7.9. Then at least one of the four paths (say, py(z;)) is
“trapped” between the other pair of paths (ps(z;) and ps(zj+1)) in the following sense: from the segment
of ps(x;) in the face containing v where both pairs of paths diverged until the segment of ps(z;) that is
incident to e at point z;, ps(z;) is not allowed to cross either of the paths p;(;) and ps(z;+1), since to do
so would violate Lemma 4.2. But this means that z; lies between z; and x;,; on edge e (since z; is the first
point along py(z;) where the path intersects e), violating the ordering of the points z, s, ..., zx along the
edge e. 1
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Similarly, we get the following claim about the uniqueness of a fork point that is a root:

Lemma 7.3 Ifr is the root of py(z;) and ps(z;) and is a fork point between py(z;) and py(ziy1) (implying
that j # i+ 1), then r is not a fork point between py(z;) and pr(Zi41)-

i X

p(x 1)
("trapped")

v=r

Figure 7.10. Illustration of Lemma 7.3.

Proof: Assume that r is a vertex (the case in which 7 is a critical root is similar). Since r is a fork point
between ps(z;) and ps(zi41), it must be the case that j < i — 1, so that z; precedes z; along the oriented
edge e = N(f’, f). Refer to Figure 7.10.

If r were also a fork point between py(z;) and pys(zj4+1), then the path ps(z;j4+1) would not be able to
connect to z;4; without intersecting ps(z;): py(z;4+1) cannot have root r (otherwise, the fork point between
ps(z;) and ps(zj41) would be a vertex, by Lemma 7.2), and it cannot have a root between z;4; and the
segment on the face where it gets separated from ps(z;) (since this would violate the definition of fork
point). 1

We can now show that the number of critical points of entry (that is, the number of critical roots) is
bounded.

Lemma 7.4 There are at most O(n) critical points of entry on any given edge e.

Proof: Let z1,...,zx be the critical points of entry to edge e from the side of face f' (e = fN f/, and
we must have a, < ay for critical points of entry to exist). Consider shortest locally f-free paths from s to
each z; (1 < i < K). For each pair of paths ps(z;) and p; (%i41), we “charge” the fork point between them.
By reasoning similar to the proof of Lemma 7.2 above, we can see that each fork vertex can be charged at
most once. Also, as in Lemma 7.3 above, we can see that a root can be charged as a fork point at most
twice: once for being the root of the left path of some pair (z;, zi+1), and once for being the root of the right
path of some pair (z;,2;+1). We make critical use of Lemma 3.7 here, for it allows us to claim that the root
of ps(z;) is a vertex for each i. This implies that there are O(n) roots and O(n) vertices, and hence that
K = O(n). An identical argument holds for critical points of entry to e from the side of face f. Thus, there
are O(n) entry points in all. I
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Thus, the total number of roots cannot be more than O(n?), since there are a linear number of vertices,
plus there are a linear number of critical points of entry per edge. We can now prove our overall bound on
the number of intervals of optimality.

Lemma 7.5 There are at most O(n*) candidate intervals created by the algorithm.

Proof:  For edge-face pair (e, f), let I1, I»,...,Ix be the intervals that correspond to paths whose first
incidence with e after the root es place in the interval; in other words, the intervals I, I5,...,Ig are
the subset of all intervals with i-:nect to (e, f) such that e occurs only once in the last edge sequence of
each I;. Let x; be a point interior to interval I;. Consider shortest locally f-free paths from s to each z;
(1 €4 < K). For each pair of paths ps(z;) and ps(ziy1), we “charge” the fork point beiween them. We
know from Lemma 7.2 that each fork vertex can be charged at most once. Also, from Lemma 7.3 we know
that a root can be charged as a fork point at most twice. (once for being the root of the left path of some
pair (z;,zi4+1), and once for being the root of the right path of some pair (z;,z;+1)). Since there are O(n?)
roots and O(n) vertices, this shows that K = O(n?). Now, each of these O(n?) paths can go on to intersect
e in many other places (at intervals of optimality that do not correspond to first incidences), but we know
from Lemma 7.1 that each such subpath can be incident at most O(n) times with e, since these subpaths
can contain no vertices or critical points (since they cross last edge sequences). This implies that e can have
at most O(n®) intervals of optimality in all, implying that the total number of intervals of optimality for
all O(n) edge-face pairs is O(n*). Note that the example in Figure 7.2 shows that this upper bound can be
achieved in the worst case. |

The above lemma allows us to guarantee that there are at most O(n*) event points. It also allows us to
bound the total number of calls to procedure Delete and to functions Find-Point and Find-Tie-Point:

Lemma 7.6  There will be at most O(n*) calls to procedure Delete and to functions Find-Point and
Find-Tie-Point.

Thus, the size of the data structures needed is easily seen to be at most O(n*):
Lemma 7.7 The data structures require at most O(n*) space.
We are finally ready to assert the validity of our algorithm and its claimed efficiency:

Theorem 7.8 The algorithm of Section 5 correctly computes the subdivision of each edge into intervals
of optimality in O(E) “steps”, where E is the number of events and is bounded by O(n*) in the worst case.
Each step involves an O(logn) binary search (to locate point T in an access channel in step (1) of Insert-
Interval) and (possibly) a call to function Find-Point and function Find-Tie-Point. The data structures
require O(E) = O(n*) space.

Thus, the otal complexity of our algorithm will be O(E(logn + F(n) + F’(n))), where F(n) (resp.,

_+1}) is the complexity of calling function Find-Point (resp., Find-Tie-Point). Note that the algorithm is

output-sensitive, in that its running time depends on E (the number of events), rather than always requiring
Q(n*) steps. In practice, we suspect that E will be much less than its worst-case upper bound of O(n*).
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8. Numerical Issues

We have written the complexity of our algorithm in terms of F(n) and F'(n), the complexity of calling
functions Find-Point and Find-Tie-Point. We now analyze these complexities.

The function Find-Point (I,z) determines a path from r, the root of I, to z that connects the last
edge sequence of I. It would be great if we could calculate exactly the refraction path from r to z, but this
problem may be intractible. We can perform ray tracing from r starting in a known direction, but we cannot
solve exactly the inverse problem of finding the direction at which to start a ray tracing in order to hit a
given point z. The problem is that when we write down the equations that represent the local optimality
criterion (Snell’s Law) at each edge, and then try to solve for the hit points along the path, we get £ quartic
equations in k unknowns (where k is the length of the edge sequence through which the refraction path is
known to pass). Elimination among these equations yields a very high degree polynomial (of degree doubly
exponential in k). Alternatively, we could apply the cylindrical decomposition technique of Collins [Co] to
arrive at a doubly exponential time procedure to determine whether or not a given rational path length
is achievable. This would also provide us with a technique of comparing the lengths of paths through two
different edge sequences, and thus would solve the entire problem precisely in doubly exponential time (giving
as output the sequence of edges and vertices along the optimal path). The same technique led [SS] to a
doubly exponential time solution to the three-dimensional combinatorial shortest path problem.

Remark: In the discrete geodesic problem of [MMP], the procedures Find-Point and Find-
Tie-Point were not necessary, since we could solve the problems in constant time by keeping
the “unfolded” image of the root of each interval of optimality. More specifically, we
associate with each interval of optimality a point 7 (the “unfolded root”), which is the
image of the root r obtained by “flattening” the polyhedron along the last edge sequence.
This allows one to compute (geodesic) distances from the root r to points z on the interval
of optimality without having to “unfold” each of the paths from r to various points z;
instead, we simply compute (in constant time) the distance from the unfolded root 7 to
point . We have attempted a similar approach in the WRP, namely that of keeping an
image of a curve whose tangent lines yield the path rays that propagate through a given
interval, but have had no success. The problem is that we are not able to show that the
degree of the resulting curves is polynomially bounded.

Let us emphasize that, in practice, a very straightforward numerical approach to solving Find-Point
would be used. For example, one technique would be to begin with a path from r to v that connects the
edges in £ along their midpoints. We then iteratively shorten the path by applying the local optimality
criterion to adjacent segments of the path. We simply pick an edge of £ at which Snell’s Law is violated, and
then let the hit point “slide” along the edge until Snell’s Law is obeyed. Each iteration can be computed
in constant time and results in a strict decrease in the weighted path length. (This algorithm is just a
coordinate descent method.) Hence, this procedure will converge to the locally optimal path from r to v.
(This type of numerical procedure is also applicable to the three-dimensional shortest path problem, in which
the local optimality criterion is that paths unfold to be straight. See [BM).) The problem with this approach
is that we do not have good bounds on the rate of convergence or on the number of iterations necessary to
guarantee that the solution is close (say, within €%) to optimal. In practice, however, the convergence rate
has been observed to be extremely fast. In fact, in some recent tests, Karel Zikan [Zi] has found that the
floating point precision of a Symbolics 3640 Lisp Machine is exhausted after approximately 10k iterations
(that is, an average of about 10 descents per coordinate). He has observed even faster rates of convergence
after implementing certain “overrelaxation” rules.

In order to get a theoretical bound on the complexity of calling Find-Point, we write a formal function
below. Rather than producing an exact answer, however, we give a path whose length is at most (1+¢€
times the length of the optimal path, where € € (0,1) is a user-specified tolerance. (We can allow ¢ > 1 in
our algorithm, but it makes some of the analysis below messier in order to avoid having the term log % be
negative.) Our function does a binary search to try to determine u, € [ua, us] such that the refraction path
from r through u, will pass through point z. It stops when it gets close to finding u, (trapping it in a very
small interval of size at most §, a parameter that will be described later), pretends that u is exactly one of
the endpoints of the interval, and then proceeds to search from u, through the remaining edges of £. Thus,
we advance from edge to edge along &, finding an approximate refraction path to z.
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The function returns a list, (A, u,u’,w), where A is the length of the path from the root, r, of I to z,
[u,u/] is a range of first bend points (for the path that it finds from r to z) that is very small (small enough
to guarantee that A is within tolerance € of optimality), and w is the corresponding last bend point of the
path to z.

Function Find-Point (I,x)

(0). Assume that I = [a,b] is a candidate interval with respect to (e, f). Let £ = (e1, .-+ €k—1, €x =€) be
the last edge sequence of I (which can be computed in time O(k) by backtracing), appended with the
edge e that contains I, and let r be the root of I. We assume that = € f. Furthermore, let [uq, up] be
the subsegment of e; defined by the first bend points of I. (Refer to Figure 8.1.) Set j =1, a1 = u,,
and by = up.

Figure 8.1. Ilustration of Find-Point.

(1). (Check interval size) If |a;b;| < 6, then go to (3). Otherwise, go to (2).

(2). (Ray tracing) Let u = (aj + b;)/2 be the midpoint of segment [a;,b;]. Perform ray tracing from r
starting with the initial ray through u. Stop the ray tracing when either the refraction path, p, leaves
the edge sequence (ej41, - .., €x) (say, by missing edge e; when it exits the face that contains e;_1 and
e;), or p emerges through edge e.

(i). (p emerges through ¢) If z lies to the left of the ray that emerges from er = e, then set
b; = u; otherwise, set a; = u. Go to (1).

(ii). (p misses edge e;) If p passes to the right of e;, then set b; = u; otherwise, set a; = u. Go
to (1).

(3). (Advance along &) If j = k, then go to (4). Otherwise, let r; be the midpoint of laj, b;]. Let aj11
(resp., b;+1) be the point on edge ej1 that is hit by the ray emerging from e; when ray tracing Is done
from r through a; (resp., b;). Set r =r; and j = j + 1. Go to (1).

(4). (Output path) Calculate the weighted Euclidean length, A, of the path (r, 1, ..., 7%, ). Return the
list ()\, al,bl,rk).
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Before proving the correctness of the above function, we need some additional notation. For 1 < j <
k + 1, let p(j) be the (weighted) length of the path from r;_; through (ej, €j41, - - -, €x) to & produced by
Find-Point, namely p(j) is the length of (rj_1, ..., 1%, 2). (Welet ro =1 and p(k + 1) = apq1|rrz|.) Let
p*(j,1) be the length of the shortest path from ¢ € int(ej_1) to z through (ej, €j41, - .., €x), and let tz*(t)
be the first segment in the shortest path. (Thus, p* (k + 1,t) is simply the length of the path (t,z), namely
aryiltz])

The following lemma shows that if we take the parameter 6 (which we used in step (1)) to be sufficiently
small, then the “almost” refraction path produced by Find-Point has a length of at most (1 + €) times the
length of the “true” refraction path from r to z.

Lemma 8.1 Leté = 67(%57;—07, where h is the minimum height of a triangluar face of S, W (resp., w) Is

the maximum finite (resp., minimum nonzero) weight assigned to faces of S, and € € (0,1) is a user-specified
error tolerance. Then the path (r, r1, ..., 1%, z) found in Find-Point has a weighted length of at most (1+¢)
times that of the shortest path from r to x through £.

Proof:  We must show that p(1) < (1 4+ €)p*(1,7). We proceed by induction to prove that for ¢ =
1,2, k+1,
. €\ wys .
p(i) < (1+§-)p (8, 7i-1) + 3k — i+ 1)6W. (%)
First, note that, trivially, p(k+1) = agsr|rrz] =p*(k+1,7%) < (1+£)p*(k+1,7%), 50 that (x) holds for 7 =
k+1. Now assume that (%) holds for i = j+1, namely, assume that p(7+1) < (1+9)p*(G+1,7)+3(k—7)6W.
We wish to show that the inequality holds for i = j. By the specification of the function Find-Point, we

have that _ ]
p(j) = ajlrj-1r;l +p(F + 1)

< ajlrioaril + (1 4+ %)p*(j +1,7;) +3(k = §)6W
< aglryoars (L4 DB'G + 1, (1) + 0y (r5-0) [+ 30k = )57,

where the first inequality comes from the induction hypothests, and the second is just the triangle inequality.
Now, using the stopping criterion of step (2), we know that [rj2*(rj-1)| < 6. This, plus another application
of the triangle inequality, gives us

ajlrj-arsl + ag (L4 5l ()| + 3(k = )W
< alrjo1z (i)l + 03(2 4+ )iz (rj-1) |+ 3(k = )8W
< aj(1+ )l (rj-)| + 36W + 3(k - 1)6W,
which implies that
p(5) < (1+ )"+ 1), 2" (rj=0) + el 12" (rg-1)) + 3k =3 + W
=1+ -;—)p*(j, ric) + 3(k — j + 1)EW.

By induction, we are done proving (*). In particular, we have shown that p(1) < (1 + p*(1,r) + 3k6W.

Now, by our particular choice of 6,
he

5= SEWiw)’

we get that
€
p(1) < (L+ 5)p°(1,7) + 365W
€

€ L3
_(1+-2-)p (1,7‘)—§-wh2

<QA+ep (L),

where the last inequality comes from the fact that wh must certainly be a lower bound on p(1,7). 1
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We need to bound the minimum height, k, of a triangular face. This can be written as a function of N,
the maximum integer used in expressing the coordinates of vertices of the triangulation. We get

Lemma 8.2 Let h(N) be the minimum height of any face for a triangulation whose vertices have nonneg-
ative integer coordinates no greater than N. Then, h(N) > 1/N+/2.

Proof: The minimum height is given by

uxv
lIvil

where u and v are nonzero vectors with nonnegative integer coordinates no greater than N, and u and v
are not colinear. Thus,

h{N) = min

h(N) :%ﬁ?(w
' /v + i

1.
N7 min(us vy — Uy vs)
1

D> e |
= NV2

)

v

Qur next claim bounds the running time of Find-Point by showing that we are doing k binary searches,
each of which has function evaluations requiring O(k) per evaluation.

Lemma 8.3 The running time of Find-Point is O(k?log(kNW/ew)), where N is the maximum integer
coordinate of any vertex, k is the length of the last edge sequence £, and W (resp., w) is the maximum finite
(resp., minimum nonzero) weight assigned to faces of S.

Proof: Foreach j=1, ..., k, we do a binary search. How many iterations will each search take? At the
beginning of a search, the interval [a;,b;] is of length at most V2N (the maximum length of any edge of S),
and we iterate until we reduce its size to § = he/6k(W/w). Thus, the number of iterations is

V2N 6vV2INE(W/w)
log e log e ,

i} each iteration requiring a ray tracing costing O(k). Thus, applying the preceding lemma, we find that
complexity of doing the k binary searches is

O(k?log

@%‘ﬂﬂ) = O(k?log

Nzk(W/w))

= O(k?log %E)

Lemma 7.1 guarantees that the length of a last edge sequence is bounded above by O(n?). (In practice,
we expect that last edge sequences are usually much shorter than the worst-case bound.) Applying this fact

and Lemmas 8.3 we get that
ENW

cw

)
= O(n*log P—AZV-)

ew
= 0(nL),

F(n) = O(k?log

where L = log N + log %’- +logn + log £ is the precision of the problem instance (the number of bits needed
to specify the largest integer, the maximum weight, the number of faces, and the tolerance).
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The function Find-Tie-Point (I,I') works in much the same way as Find-Point, except that now we are
searching for the tie point between two roots. It is assumed that INI’ # 0. (Note that I and I’ are candidate
intervals that are in the process of being trimmed; this allows them to overlap.) The search proceeds by
“throwing out” at least one quarter of the set laj, b;] x [aj, )] at each iteration, and then calling itself
recursively.

Find-Tie-Point (I,1') returns a list (z, A, u1, uz, u}, ub, w,w'), where z is the required tie point, A is the
distance from s to the point z, [uy, us] is the (small) range of first bend points of paths through I to z, [u}, u5)
is the (small) range of first bend points of paths through I’ to ¢, and w and w’ are the corresponding last
bend points for paths through I and I’, respectively. If there is no “almost” tie point (that is, a point whose
distances from s through the two different roots are within a fraction € of each other), then the function
returns NIL.

Figure 8.2. Illustration of Find-Tie-Point.

Function Find-Tie-Point (I,1')

(0). Assume that I = [a,b] and I' = [d',b] are both candidate intervals with respect to (e, f). Let £ = (e1,
..., ex =€) (resp., & = (€}, ..., €}, = ¢)) be the last edge sequence (appended with e), let (uq,us)
(resp., (u,,,u)) be the first bend points, and let r (resp., r') be the root of I (resp., I'). (Refer to
Figure 8.2.) We further assume that INI' # 0. Set j,j' =1, a1 = ua (a}) = u!), and by = up (b} = uy).
We assume that points on e are ordered from left to right as one looks at face f (e.g., a < b), and that
I’ is right of I in the sense that a < b'.

(1). (Check intgrval sizes) If |ajb;| < 6 and j < k, then go to (3). If |a},b| < & and j' < k', then go to
(4). Otherwise, go to (2).

(2). (Ray tracing) Let u = (a; + b;)/2 be the midpoint of segment laj, b;], and let v’ = (a}, + b}.)/2 be
the midpoint of segment [a},,b},]. Perform ray tracing from r starting with the initial ray through u.
Stop the ray tracing when either the refraction path, p, leaves the edge sequence (ej41, - .-, €k = e)
(say, by missing edge e; when it exits the face that contains e;_; and e;), or p emerges through edge e.
Similarly, perform ray tracing from r' starting with the initial ray through u’, stopping when p’ either
leaves edge sequence (€}, ..., € = e) (say, by missing edge e}, when it exits the face that contains

el,_, and el,), or p' emerges through edge e.
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(i). (p and p’ emerge through e) Let c (resp., ¢’) be the point of ¢ where p (resp., p') emerges.
We get the following four cases. (Refer to Figure 8.3.)

¢ gfa’,b']

¢'zc c'<c

Figure 8.3. Four cases in Find-Tie-Point.

(a). (' ¢[a,b]) If ¢ > b, then set b, = u (that is, throw out the right half of the interval
[af/,8%)]). Otherwise, set aj, = u' (that is, throw out the left half of the interval
[a},, b%1]). Go to (1).

(b). (c & [a',b']) Ifc > ¥, then set bj = u (that is, throw out the right half of the interval
laj,b;]). Otherwise, set a; = u (that is, throw out the left half of the interval [a;, b;]).
Go to (1).

(c). (¢ > ¢) Throw out the right half of the interval [a}, b}] crossed with the left half of
the interval [a;,b;], and call Find-Tie-Point recursively. (This will be described fully
below.) Go to (1).

(d). (Otherwise, ¢’ < ¢) The path to ¢ must cross the path to ¢’. Let z be the crossing
point. If the path to ¢’ gets to z before the path to ¢ does, then throw out the right
half of [a},b}] crossed with the right half of the interval [a;,b;]. Otherwise, throw

out the left half of [a}, b}] crossed with the left half of the interval [a;, b;]. Go to (1).

(ii). (p misses edge e;) If p passes to the right of e;, then set b; = u; otherwise, set a; = u. Go

to (1).
43



(iii). (¢ misses edge €},) If p’' passes to the right of el,, then set b}, = u'; otherwise, set aj, = u'.

Go to (1).

(3). (Advance along &) If j = k and j' = k', then let v, = (ax + bx)/2 and go to (5). Otherwise, let r; be
the midpoint of [aj, b;]. Let aj41 (resp., bj+1) be the point on edge ejy1 that is hit by the ray emerging
from e; when ray tracing is done from rj_1 through a; (resp., b;). Set 7 =r; and j = j+ 1. Go to (1).

(4). (Advance along &') If j' = ¥’ and j = k, then let ., = (a}, + b})/2 and go to (5). Otherwise, let
ri, be the midpoint of (@, 0] Let ajiyy (resp., bii,,) be the point on edge e, that is hit by the
ray emerging from e}, when ray tracing Is done from rj,_,; through al, (resp., bj). Set r' = r} and
j'=j' +1. Go to (1).

(5). (Output path) Let A be d(r) plus the weighted Euclidean length of the path (r, ry, ..., rx) and let X
be d(r') plus the weighted length of the path (', o ). IEN & ((1 =€), (1 +€)A), then return
NIL (there is no tie point in I N I'). Otherwise, return the list (re, A, a1, by, al, by, Te—r, Phi_q)-

We must define what we mean by the phrase “throw out the right half of the interval [a},b}] crossed
with the left half of the interval [a;,b;], and call Find-Tie-Point recursively”, which was used above. We
instantiate an interval I} C e corresponding to paths through the left half of the interval [a},,b}/] and an
interval Iy, C e corresponding to paths through the left half of [aj,b;] and call recursively the function Find-
Tie-Point (I, I}). (This solves the problem corresponding to the left half of the interval [al,,b}/] crossed
with the left half of [a;,b;].) Also, we instantiate an interval Igr C e corresponding to paths through the
right half of [a;,b;] and an interval I’ C e corresponding to paths through [a},,b}] and call Find-Tie-Point
(Ir,I"). (This solves the problem corresponding to the interval [a},, b},] crossed with the right half of laj,b;5].)
Similar meaning is assigned to the phrases in step 2(i)(d) above.

The fact that Find-Tie-Point finds to within € a pair of paths whose lengths are equal follows by much
the same analysis as in the case of Find-Point. It is also not hard to see that the complexity of Find-Tie-Point

is the same as that of Find-Point (namely, F'(n) = O(F(n))).

Lemma 8.4 The complexity of a call to Find-Tie-Point is F'(n) = O(F(n)) = O(n*L), where L is the
precision of the problem instance.

Proof: This follows since at each iteration of each binary search, we throw away a constant fraction of the
set [a}, b}] x [a},,b}/] (at least one quarter). More precisely, for a fixed j and j/, let W(m, m') be the number
of ray traces we must do before the next incrementation of j or j/, where m (resp., m’) is the number of
intervals of size § that fit in the original interval [a;,b;] (resp., [a}.,b},]). Then W(m,m/ ) must satisfy the

following recursion:

W(m, -’-".fl-) +0(1), in case (a),
W(m,m') = { W(%,m')+0(1), in case (b), or
W(m, -";—') + W(E, -";‘I-) +0(1), in case (c) or (d).

The boundary conditions on W(m, m') are given by
m
W(m,1) = W(-—Q—, 1)+ 0Q1)

W(l,m') = W(l,f-"i'-)-x-c)(l)
W(1,1) = 0(1).

From these recursions, we get that W(m,m') = O(log(m +m')) = O(2X¥y = O(L). Each time we do ray

tracing it costs us O(k + k') = O(n?), and the number of times j or 4 is incremented is (k + k') = O(n?),
giving us a total complexity of O(n*L). 1

When we proved the correctness of our algorithm, we were making the assumption that Find-Point
and Find-Tie-Point could be performed precisely. We must check that each of the steps of our algorithm
and the proof of its correctness remains valid when we use the e-approximation provided by our numerical
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routine. All of these follow through with little change. We need only convince ourselves that the intervals
of optimality become intervals of e-optimality, meaning that a point in an interval can be reached along a
locally f-free path whose length is at most (1 + ¢) times the length of the shortest locally f-free to the point.

Remark: In step (3) of Insert-Interval, when we call Find-Tie-Point (I1,I), we set the
first bend point of the right endpoint of Iy, uy,, to be the rightmost point in the small
interval of first bend points corresponding to the search through I, while we chose u, to
be the i 71most point in the small interval of first bend points corresponding to the search
througi: /. {Similarly, when we call Find-Tie-Point(I,I;), we set the first bend point of
b, up, to be the rightmost point in the small interval of first bend points corresponding
to the search through I, while we chose u,, to be the leftmost point in the small interval
of first bend points corresponding to the search through I5.) The reason for this is that
it allows us always to overestimate slightly the size of an interval of optimality. That is,
the range of first bend points, [u,, us], is always slightly larger than it needs to be (and
will always contain the “exact” range), but it is very close in the sense that the lengths of
paths through the bend points that we store are no longer than (1 + €) times the length
of the shortest path.

Thus, we can summarize the complexity of our algorithm:

Theorem 8.5 Qur algorithm correctly computes the subdivision of each edge into intervals of e-optimality
in time O(ES) O(n3L) and space O(E) = O(n*), where E is the number of events (which is bounded above
by O(n%)), S = O(ng)) = O(n%L) is the time necessary to do the searches Find-Point and Find-Tie-Point,
and L = log N 4+ log =~ + logn + log%— is the precision of the problem instance.

Although the exponent in the worst-case running time seems to be high, we believe that our algorithm
is practical. We should emphasize that all of our bounds on the complexity of our search procedure are
extremely crude, and the average running time of such a search procedure should be substantially less than
the worst-case bounds we have produced. In particular, the coordinate descent method we described earlier
seems to work very fast in practice. Also, it may be possible to improve our worst-case bounds.

9. Using the Subdivision

To recover the length, d(z), of the shortest path from s to any point x € e = f N f’, we do the following:
If z is a vertex, then d(z) is just the label that was given it when z was permanently labeled. Otherwise,
locate z in interval of optimality I (resp., I') for (r, &) (resp., (v',£’)) with respect to (e, f) (resp., (e, f')).
(This point location is done simply in time O(log n).) Compute the sums d(7) +d, ¢(z) and d(r') + d,s g/().
By Lemma 4.1, the smaller of the two sums is the desired shortest path length. The calculation of d. ¢(z)
or d, g:(z) requires either calling a numerical routine (such as coordinate descent), or calling the function
Find-Point (which has worst-case running time F(n) = O(n*L)). Thus, after preprocessing, the length of
the shortest path to vertices can be calculated in constant time, while the length of the shortest path to a
point on an edge can be queried in time O(n*L) (or just two calls to a “fast” numerical procedure).

Remark: At this point, we should make a comment on why we used locally f-free paths
to define intervals of optimality. If we we had instead defined intervals of optimality to be
those subintervals of points on an edge that are reached optimally through the same root
and edge sequence, without the requirement of being locally f-free, then the number of
such intervals could potentially be huge (doubly exponential in n). The problem is that
the bisector between two roots satisfies an equation that involves the sum of a polynomial
number of square roots. When the square roots are eliminated, we get a polynomial of
potentially doubly exponential degree. The number of intersections of the curve with a
straight line is thus doubly exponential. (It is an interesting open problem to determine
whether or not there could actually be such a large number of intersections. At this
time, we do not see how to guarantee fewer than doubly exponential.) Of course, if our
algorithm produced such a subdivision, then the last edge sequence and root of the optimal
path to any particular point on an edge could be determined in constant time once the
point is located in the subdivision (but this point location query could potentially take
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exponential time). Instead, our approach gives us two possible candidates for the structure
of the shortest path to a point on an edge, and we must then run a numerical routine or
call Find-Point to determine to any desired degree of accuracy which of the two paths is
better.

The problem with extending our algorithm to compute the subdivision of the interiors of faces is that
the bisector curves that bound cells of the shortest path map subdivision will, in general, be curves of very
high degree instead of simple hyperbolas as was the case for the DGP in [MMP]. Then, even if we had a
representation of this subdivision, a point location query would involve testing on which side of such a curve
the query point lies. This can be answered by calling a numerical routine or by calling Find-Point. If we
build such a subdivision (which could be done by an extension of the technique used in [MMP], this time
using a numerical routine similar to F. ind-Tie-Point to determine the distance to the next intersection of two
consecutive boundary curves), then the complexity of processing one query is O(F(n)logn) = O(n*Llogn).
Then, within this time bound, we could produce both the length of an e-optimal path, as well as the path
itself. Another option would be to approximate the bisector curves with something that is, say, piecewise-
linear. It should be possible then to prove a bound on the size of the approximate subdivision in terms of
the tolerance €.

Alternatively, a brute-force approach is to compare all O(n3) intervals of optimality with respect to
(ei, f) (for edges €1, €2, and e3 of face f), once we have located z in face f (which can be done by standard
point location techniques in time O(log n)). There must be a shortest path to z that passes through one
of these intervals to get to z. This straightforward approach will, after preprocessing, yield the length of
a shortest path (within the usual tolerance ¢) to z in O(n®) “steps”, with each step being a call to Find-
Point (or a numerical routine), requiring time O(n%L). An e-optimal path can also be produced within
the same time bound simply by tracing back through the predecessor pointers of intervals of optimality.
Unfortunately, this query time is, in the worst case, only one factor of n less than the preprocessing time of
O(n3L). In practice, however, there are usually very few intervals of optimality surrounding any one face,
and the numerical routines run much faster than the worst-case complexity bounds suggest.

Theorem 9.1  After preprocessing, an e-optimal shortest path from s to any point x € S can be found in
O(n3) “steps”, each requiring time O(n*L) in the worst case. The preprocessing can be done in time O(n®L)
(and space O(n?)). Here, L =log N + log -—‘:)i + logn + log L is the precision of the problem instance.

10. Generalizations and Extensions
Several generalizations and extensions to our algorithm are of possible interest.

(1). First, we can generalize to the case of multiple source points s. The resulting structure is then
a Voronoi diagram (on the edges of the subdivision) according to weighted Euclidean lengths. The only
modification we need is to insert the appropriate intervals about each source point in the initialization step
of the main algorithm.

(2). Although we described our algorithm in terms of a triangulation S, we suspect that it will be
more efficient in any implementation to write the algorithm in terms of an arbitrary polygonal subdivision,
allowing regions to be many-sided polygons rather than breaking them into triangles. It is straightforward
to write the details of our algorithm for this case.

(3). We may want to generalize the cost structure from being that of a uniform cost per unit distance
in a region to that of allowing a cost function (such as a linear function) in each region. The function
should be specified by some fixed number of parameters, and should allow computation of geodesics. In the
uniform cost case, the geodesics within a given region are simply straight line segments. In more general
cases, geodesics would have to be computed by techniques of calculus of variations. Our algorithm must
then be modified to apply the local optimality criterion (Snell’s Law) to curved paths at the boundaries of
regions. If an optimal path passes through the point y € int(e), with e = f O f', then the tangent lines at
y to the geodesic curves in f and in f' must meet at y such that they obey Snell’s Law. Using this local
optimality criterion, then, the algorithm should proceed in a similar fashion to the uniform case, this time
piecing together curved segments from region to region.
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(4). We may want to generalize the problem to allow boundaries between regions to be curved. Then,
Snell’s Law at an interior boundary point y may be applied as if the boundary at y is the straight line
tangent to the boundary at y. While it is not hard to describe the local optimality condition in this case,
further work is necessary to figure out the details of the generalized algorithm and what restrictions should
be placed on the curves.

(5). Our algorithm generalizes readily to allow the regions to reside on a polyhedral surface (e.g., we
may want to plan paths on the surface of a polyhedron whose faces and edges are weighted). Then the local
optimality criterion becomes Snell’s Law applied to the “unfolded problem” at each boundary. That is, for
an edge e = fN f’, we must “unfold” f’ about e so that f and f’ are made coplanar, and then we can apply
Snell’s Law to points interior to e in this rotated coordinate frame. With these minor modifications to our
algorithm, one can get a solution to this more general problem within the same time bounds as the weighted
planar case.

(6). We may want the cost per unit distance to depend on the direction of motion. For example, it
may be more difficult to go up a hill than to go down. Then, for each point 2 of each region there would be
a function c, () that is the cost per unit distance of traveling at orientation ¢ through point z. In case ¢;
depends only on the normal to the surface at z, we would have a “hill climbing” problem. We are currently
investigating this extension. Some preliminary results have been obtained by [RoRo].

(7). Note that by allowing zero-cost regions, we have solved the problem of finding shortest paths
from one region to another region (rather than just between two points). We simply make the source and
destination regions of zero cost, and find a shortest path from any point of one region to any point of the
other. The result will be a shortest path between the regions.

In conclusion, we should mention several related papers that have appeared since the original draft of our
paper. Another group of reserachers, [Ri, RRZM, RoRi], has examined the general weighted region problem,
applying the local optimality criteria of Snell’s Law to obtain efficiently implemented algorithms. While their
algorithms do not have worst-case polynomial time bounds or guaranteed performance (within a given ),
they show that they do well in practice. Also the recent PhD thesis of [Al] investigates the implementation
of an algorithm that actually constructs a complete shortest path map in the weighted region context.

An algorithm that solves the WRP in the special case of ay € {0,1, +o0} is described in [Mi2,GMMN].
The algorithm constructs a special type of visibility graph (a critical graph) that exploits the fact that
shortest paths to an edge of a free region must enter it at a normal. In this case, they solve the problem
exactly in polynomial (quadratic) time. They generallize their results to include the case of arbitrary weights
on edges of the subdivision. The edges can be thought of as “road” segments or as any other type of linear
feature. Again, they use a type of critical graph, this time exploiting the local optimality property that
a path that is incident on the interior of a road edge must be incident at the critical angle for that edge.
Additionally, there may be a “fixed charge” £, € [0, 00] for crossing an edge e. This charge can model the
cost of crossing a fence or a stream. (Note that the algorithm we present here in this paper can be modified
to include such a charge.) [Ro] has also worked on the special case of the weighted region problem in the
presence of linear features, and although his theoretical bounds are not as tight as those mentioned above,
he gives favorable experimental results.

The recent papers of [PP1, PP2] discuss a generalization of the weighted region problem to the case
in which boundaries between regions are curved, weights within regions may not be uniform, the speed of
travel is direction-dependent, and the region boundaries and the weights may also be varying in time. The
application motivating their research is to routing vessels among time-varying weather patterns in the ocean.
They derive the appropriate local optimality criteria (a generalization of Snell’s Law), and they discuss a
ray-tracing procedure for searching for locally optimal paths. It is an interesting open problem to analyze
the combinatorial complexity of searching for globally optimal paths in this general setting.

Another recent result on the weighted region problem has been obtained by [YCL]. They consider
the problem in which the weighted regions are all rectilinear, and distances are measured according to the
weighted L; metric (rather than the weighted Euclidean metric we considered here). They obtain an optimal
O(nlog n) time algorithm for the case in which the regions are all aligned rectangles, and they obtain running

time O(nlog% n) when the regions are rectilinear polygons.
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